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Electron Localization in the Quantum Hall Regime
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The theory of the insulating state discriminates between insulators and metals by means of a
localization tensor, which is finite in insulators and divergent in metals. In absence of time-reversal
symmetry, this same tensor acquires an off-diagonal imaginary part, proportional to the dc transverse
conductivity, leading to quantization of the latter in two-dimensional systems. I provide evidence that
electron localization—in the above sense—is the common cause for both vanishing of the dc longitudinal
conductivity and quantization of the transverse one in quantum Hall fluids.
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W. Kohn showed in 1964 that the insulating state of
matter reflects a peculiar organization of the electrons in
their ground state: the cause for the insulating behavior is
electron localization [1,2]. Such localization, however,
manifests itself in a very subtle way, fully elucidated
much later. In 1999 Resta and Sorella [3] defined a tensor
which provides a quantitative measure of Kohn’s localiza-
tion, and has a common root with the modern theory of
polarization [4–6]. This ‘‘localization tensor’’ is an inten-
sive property characterizing the ground wave function as a
whole: it is finite in any insulator and divergent in any
metal. A further advance on this line was provided in 2000
by Souza, Wilkens, and Martin [7]. I am going to refer to
these results altogether as to the ‘‘theory of the insulating
state’’ (TIS) [8]: so far, it has only considered time-rever-
sal-invariant systems. I show here that, in the absence of
time-reversal symmetry, the TIS localization tensor [3,7,8]
is naturally endowed with a nonvanishing imaginary part.
For a two-dimensional system, the imaginary part is quan-
tized whenever the real part is nondivergent, and is pro-
portional to dc transverse conductivity. I show here that the
theory of the quantum Hall effect (particularly in the for-
mulation of Niu, Thouless, and Wu [9]) has a very direct—
and previously unsuspected—relationship to TIS, and in
fact can be regarded as a consequence of the latter. In order
to predict whether the dc transverse conductivity of any
two-dimensional many-electron system is quantized, it is
enough to inspect electron localization in the ground state:
this is the major result of the present Letter.

Phenomenologically, an insulating material is character-
ized by vanishing dc longitudinal conductivity. In this
sense, an electron fluid in the quantum Hall regime is in
fact an insulator, independently of what establishes such a
regime (e.g., disorder). According to TIS the many-body
wave function is then localized. From the present view-
point, electron localization is the common cause for both
vanishing of the longitudinal dc conductivity and quanti-
zation of the transverse one; the two features stem here
from the same formalism. The present view may appear at
odds with the established one, which in the quantum Hall
regime focuses on the extended states more than on the
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localized ones [10]; but it is worth stressing that the TIS
localization tensor is a global geometric property charac-
terizing the ground wave function, not the individual one-
electron states.

In the final part of this Letter I also show how TIS works
for noninteracting electrons in the lowest Landau level.
While disorder is obviously essential for producing a
quantum Hall fluid, a flat substrate potential is used here
to provide analytical results. At complete filling the (real)
trace of the localization tensor is shown to be equal to the
squared magnetic length, while the (imaginary) antisym-
metric part of the same tensor provides the Hall conduc-
tivity; at fractional filling the real part diverges while the
imaginary part is ill defined. This confirms our main mes-
sage: inspecting the ground-state localization is enough to
predict quantization of transverse conductivity.

The TIS localization tensor [3], also known as the sec-
ond cumulant moment hr�r�ic of the electron distribution
[7,8], is an intensive property having the dimensions of a
squared length, and whose only ingredient is the many-
body ground wave function j�0i. In the cases dealt with so
far, periodic boundary conditions were adopted; these are
easily modified to accommodate a macroscopic magnetic
field [9]. If j�0i is an N-electron wave function periodic
with period L in all Cartesian coordinates rj;� separately,
we define �� � �2�=L�e�, where e� is a unit vector along
�, and

j�0�0�i � j�0i; j�0����i � ei2�=L
P

N
j�1

rj;� j�0i: (1)

According to TIS, the localization tensor is [3,7,8]

hr�r�ic �
L2

4�2N
ln

h�0����j�0����i

h�0����j�0�0�ih�0�0�j�0����i
; (2)

where the thermodynamic limit is understood. In the ex-
isting literature time-reversal symmetry is assumed: the
tensor is then real. When time-reversal invariance is absent,
this same tensor is endowed with an off-diagonal imagi-
nary part, which—as shown below—is particularly rele-
vant for two-dimensional systems.
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As first shown by Souza, Wilkens, and Martin [7] by
means of a fluctuation-dissipation theorem, the real part of
the localization tensor is related to a frequency integral of
the longitudinal conductivity, which is finite in any insu-
lator and divergent in any metal:
Z 1

0

d!
!

Re����!� �
�e2N

@Ld
Rehr2

�ic

� �
e2

4�@Ld�2
lnjh�0�0�j�0����ij

2:

(3)

I am going to extend this result, in order to address the off-
diagonal imaginary part of the localization tensor as well,
and additionally to consider cases where a macroscopic
magnetic field is present. Specializing from now on to a
two-dimensional system, we notice that Eq. (3) is size
invariant in form.

I assume the system as isotropic in the xy plane, with a
magnetic field B along z. Therefore �11 � �22, while the
off-diagonal element is purely antisymmetric: �12 �
��21. The Kubo formula for the conductivity tensor is

����!� �
ie2

@!L2 lim
�!0�

X0

n�0

�
h�0jv̂�j�nih�njv̂�j�0i

!�!0n � i�

�
h�0jv̂�j�nih�njv̂�j�0i

!�!0n � i�

�
; (4)

where !0n � �En � E0�=@ are the excitation frequencies. I
then focus on the two quantities
Z 1

0

d!
!

Re�11�!� �
�e2

@L2 Re
X
n�0

h�0jv̂1j�nih�njv̂1j�0i

!2
0n

;

(5)

Re�12�0� �
2e2

@L2 Im
X
n�0

h�0jv̂1j�nih�njv̂2j�0i

!2
0n

; (6)

where the right-hand side members are written as to em-
phasize the common structure. Notice that we have taken
the limit �! 0 at finite L. In transport theory the interest
is in evaluating � as a continuous function of !, by
smoothing the singularities in Eq. (4): this can be done
by keeping the ‘‘dissipation’’ � finite while performing the
thermodynamic limit first [11]. The order of the two limits
is irrelevant here, since Eq. (5) is an integrated property,
and Eq. (6) is dissipationless.

In order to transform the sum over the excited states into
a ground-state property, it is expedient to consider the
many-body Hamiltonian with a ‘‘twist’’ (or ‘‘flux’’)

Ĥ�k� �
1

2m

XN
i�1

�
pi � @k�

e
c

A
�

2
� V̂; (7)
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where V̂ comprises the one-body substrate potential and
the electron-electron interaction. We indicate the ground
state of Eq. (7) as j��k�i, with j��0�i � j�0i; straightfor-
ward perturbation theory yields

j��k�i ’ j�0i � k �
X
n�0

j�ni
h�njv̂j�0i

!0n
; (8)

h�nj@���0�i � h�njv̂�j�0i=!0n; n � 0; (9)

where the velocity operator is v̂ � rkĤ�k�=@, and @� �
@=@k�. Strictly speaking, the perturbation expansion holds
for a conventional insulator where the Fermi gap does not
vanish in the thermodynamic limit. More generally, owing
to Eq. (5), it also holds whenever Re����!� goes to zero
fast enough at small !, i.e., for any insulator [7].

The sum over excited states appearing in Eqs. (5) and (6)
can then be transformed into

X
n�0

h�0jv̂�j�nih�njv̂�j�0i

!2
0n

� h@���0�j@���0�i

� h@���0�j��0�i

� h��0�j@���0�i: (10)

The real part of Eq. (10) is the quantum metric tensor
defined by Provost and Vallee [12], evaluated at k � 0;
the imaginary part is the corresponding curvature (divided
by two).

So far, we have specified neither the magnetic gauge nor
the boundary conditions. We choose the Landau gauge and
the usual magnetic boundary conditions [9] for translations
by L of each coordinate xi and yi. These require the total
flux BL2 across the system to be an integer number Ns of
flux quanta �0 � hc=e. At filling � the density is then

n0 �
�Ns
L2 �

�

2�l2
; (11)

where l � �@c=eB�1=2 is the magnetic length.
If the insulating ground state is nondegenerate at any k,

the eigenstate j��k�i assumes a simple form whenever the
k coordinates are integer multiples of 2�=L. For instance,
if k coincides with one of the �� vectors defined above,
then j��k�i coincides with Eq. (1) apart from a phase
factor which is irrelevant here: in fact the two wave func-
tions obey the same Schrödinger equation and the same
magnetic boundary conditions. The case of degenerate
ground states has been considered as well [13]. We then
discretize the derivatives in Eq. (10) using the special ��
vectors of Eq. (1) and replacing h�0����j�0�0�i ’
1� lnh�0����j�0�0�i, as usual when dealing with Berry
phases [14]. The result is
h@���0�j@���0�i � h@���0�j��0�ih��0�j@���0�i ’
L2

4�2 ln
h�0����j�0����i

h�0����j�0�0�ih�0�0�j�0����i
� Nhr�r�ic: (12)
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Replacing the real part of Eq. (12) into Eqs. (5) and (10)
one recovers the Souza-Wilkens-Martin sum rule, Eq. (3),
which is nondivergent in the insulating case.

The imaginary part of Eq. (12) shares the same conver-
gence properties as the real one, after Eq. (10); in the
insulating case it takes the form of a discrete Berry phase
[14] over the three-point path in k space from 0 to �1 to �2

to 0. However, since Berry phases are defined modulo 2�,
this expression does not provide a unique value. The
ambiguity is removed by replacing the Berry phase, i.e.,
the loop integral of the Berry connection, with the surface
integral of the Berry curvature. We therefore evaluate the
imaginary part of Eq. (10) as

Imh@1��0�j@2��0�i �
L2

4�2 Im
Z 2�=L

0
dk1

�
Z 2�=L

0
dk2h@1��k�j@2��k�i;

(13)

in the limit of large L. The dimensionless integral equals
��C1, where C1, known as the first Chern number, is a
topological integer [9,15,16] characterizing the electron
distribution. The imaginary part of the localization tensor
is then

Im hxyic �
1

N
Imh@1��0�j@2��0�i � �

1

4�
L2

N
C1

� �
l2

2�
C1: (14)

Upon replacement of the previous expressions into Eq. (6)
we retrieve the seminal result of Niu, Thouless, and Wu
[9]:

Re�12�0� � �
e2

h
C1: (15)

This was originally obtained by an analysis of the Green
function, under the hypothesis that the system has a Fermi
gap; in the present approach the presence of a Fermi gap—
possibly in the weak sense outlined above—is a necessary
and sufficient condition for the convergence of Eq. (10) in
the thermodynamic limit. But this property, belonging to
the excitations of the system, is transformed here into a
pure ground-state property, owing to a fluctuation-
dissipation theorem. As far as the longitudinal conductivity
is concerned, a quantum Hall fluid is no different from any
other insulator, and its wave function is localized in the
sense of TIS [3,7,8]. I have shown that, owing to such
localization, any two-dimensional insulator may display a
quantized transverse conductance in the absence of time-
reversal symmetry (even in the absence of a macroscopic B
field [17]).

Equation (15) seems to legislate integer quantization of
the Hall conductance in all circumstances, contrary to
experimental evidence. For fractional fillings, Ref. [9] as-
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sumes then a degenerate ground state, whose different
components are uncoupled and macroscopically separated.
The degeneracy problem has been thoroughly discussed in
the literature (for a review, see Ref. [18]); the present Letter
has nothing to add.

In the metallic case both sums in Eqs. (5) and (6) do not
converge: the former is positively divergent while the latter
is indeterminate. Therefore TIS formally defines the di-
agonal elements of the localization tensor as infinite [3,7,8]
(delocalized ground wave function). The off-diagonal ele-
ment hxyic however, remains ill defined, and the Kubo
formula, Eq. (6) is invalid. The transverse dc conductivity
is therefore not quantized as in Eq. (15) and has to be
evaluated by different means, e.g., classically [10].

In the final part of this Letter we specialize to noninter-
acting electrons and to the integer quantum Hall effect. In
the noninteracting case (and only in this case) the real part
of the localization tensor, Eq. (2), has a meaningful ex-
pression in terms of the one-body reduced density matrix
[8,19]:

Re hr�r�ic �
1

2N

Z
drdr0�r� r0���r� r0��j��1��r; r0�j2;

(16)

where single occupancy is assumed. The integral con-
verges whenever the density matrix vanishes fast enough
at large jr� r0j: therefore the localization tensor discrim-
inates between insulators and metals by measuring via
Eq. (16) the ‘‘nearsightedness’’ [20] of the electron distri-
bution. Our major, very general, result implies that the
finiteness of Eq. (16) warrants quantization of dc trans-
verse conductivity.

Noninteracting electrons are kept in the quantum Hall
regime by disorder, and an analytical implementation of
the present formalism is obviously not possible. In order to
demonstrate how the theory works, I consider the academic
case of a flat substrate potential, with noninteracting elec-
trons in the lowest Landau level. I show explicitly that the
system is insulating, in the sense of TIS, at complete filling,
and metallic otherwise.

For complete filling (� � 1) the system is uniform with
density n0, Eq. (11); the modulus of the density matrix is
gauge invariant and equals n0 exp�	�r� r0�2=�4l2�
. The
trace of the localization tensor hr2ic � hx2ic � hy2ic is

hr2ic�
1

2n0

Z
drr2j��1��0;r�j2��n0

Z 1
0
drr3e�r

2=�2l2� � l2;

(17)

and therefore it equals precisely the squared magnetic
length.

The case of B � 0 is qualitatively different: the density
matrix is polynomial (instead of exponential) in jr� r0j,
and not nearsighted enough to make the integral in Eq. (16)
convergent. Therefore, the real part of the localization
tensor is formally infinite, as expected, while its imaginary
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part vanishes owing to time-reversal symmetry. At finite B
values, instead, the convergence of the real part of the
tensor (hence the insulating nature of the system) can be
regarded as the cause for quantization of the transverse
conductivity.

Any single-determinant wave function is invariant by
unitary transformations of the occupied orbitals among
themselves, and, in particular, by transformations which
localize the orbitals; in the general case the localized or-
bitals are not eigenstates of the single-particle Hamil-
tonian. The real part of the localization tensor, Eq. (16),
provides an important bound for such transformations
[8,19]. Suppose one looks for orbitals which are optimally
localized in one Cartesian direction, say x, and delocalized
along y. These orbitals have been called ‘‘hermaphrodite’’
orbitals in Ref. [19]: their quadratic spread in the x direc-
tion is minimum and equals the tensor element hx2ic.

For electrons in the lowest Landau level at complete
filling, any unitary transformation of the occupied orbi-
tals among themselves leads to Hamiltonian eigenstates,
owing to energy degeneracy. In this case the hermaphrodite
orbitals are easily identified with the Landau-gauge orbi-
tals [10]:

 k�r� / eikyye��x�kyl
2�2=�2l2�: (18)

In fact these orbitals are plane-wave-like in the y direction,
while their quadratic spread in the x direction equals
precisely hx2ic � l2=2.

Next, we consider a single case study at fractional �
where the longitudinal conductivity does not vanish and
therefore—according to TIS—the ground state is delocal-
ized. It is expedient to switch to the central gauge, where
the single-particle orbitals are

 m�z� �
1������������������

2�2mm!
p

l
zme�jzj

2=4; (19)

where z � �x� iy�=l. Any state with fractional filling is
nonuniform. A possible state with � � 1=2 is built by
occupying the odd-m orbitals only, i.e.,

��1��z; z0� �
X1
m�0

 2m�1�z� 
�
2m�1�z

0�

�
1

2�l2
e�jzj

2=4e�jz
0j2=4 sinh�zz0�=2�: (20)

This density matrix is not nearsighted: taking for instance
z0 � �z we have

��1��z;�z� � �
1

2�l2
e�jzj

2=2 sinh�jzj2=2�; (21)

which clearly does not vanish at large jzj. The integral in
Eq. (16) is positively divergent, providing a formally infi-
nite real part of the localization tensor, as expected.
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Because of the above general considerations, the corre-
sponding imaginary part is ill-defined and the transverse
conductivity is not quantized.

In conclusion, I have shown quite generally that the TIS
localization tensor [3,7,8]—besides discriminating be-
tween insulators and metals on the basis of longitudinal
conductivity—also yields very directly the transverse dis-
sipationless dc conductivity in the insulating case, as, e.g.,
in a quantum Hall fluid. It is enough to inspect electron
localization in order to predict whether the dc transverse
conductivity is quantized. The localization tensor is a pure
ground-state property and has a geometric nature: it co-
incides in fact with the quantum metric-and-curvature
tensor of Provost and Vallee [12] (divided by N),
Eqs. (10) and (12). Both the real and the imaginary parts
of the TIS localization tensor carry an outstanding physical
meaning.
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