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Energy Dissipation and Stability of Propagating Surfaces
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Thermodynamic equilibrium states are given by the minimum of a convex free energy function with
suitable boundary conditions. Nonconvexity may lead to the coexistence of several phases and the
classical Gibbs phase rule allows constructing their equilibrium properties (e.g., density or pressure).
Within the framework of nonequilibrium thermodynamics, the maximization of energy dissipation (under
suitable boundary conditions) can be used as an extremal principle to find stationary states. We show that
stationary states generally exist for convex energy dissipation functions and that nonconvexity leads to
metastable and unstable states. A geometric argument, similar in spirit to Gibbs’ double-tangent
construction, yields the stability limits of stationary states. This argument is applied to study a classical
problem of materials science, namely the motion of a grain boundary under the influence of solute drag.
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In analogy to the extremum principles in equilibrium
thermodynamics, Onsager proposed in 1931 the principle
of maximum energy dissipation [1] for the case of heat
conduction. This principle has been exploited successfully,
e.g., to describe diffusion-controlled processes by Svoboda
et al. [2–4] and serves as a convenient tool to find evolu-
tion equations for the thermodynamic forces. While the
minimum of the free-energy function describes an equilib-
rium state, the maximum of the energy dissipation de-
scribes the evolution of a nonequilibrium system. In both
cases, the extremum is unique if the thermodynamic func-
tion is convex or concave. A much more complicated
situation arises if the function is neither convex nor con-
cave, which we simply call nonconvex. In equilibrium
thermodynamics, it is well known that a nonconvex free-
energy function may lead to sudden phase transformations
or to coexistence of several phases, as described in phase
diagrams of materials [5]. In this Letter, we explore the
possibility of using the principle of maximum energy dis-
sipation for the case of a nonconvex energy dissipation
function.

Nonconvex energy dissipation functions can be found in
various fields. A prominent example is the hydraulic jump
when water flows down uniformly in an open channel; see,
e.g., [6], Ch. 10. The observation is that the water depth h
changes abruptly when the average fluid velocity v ex-
ceeds a critical value. The energy dissipation per unit
length of the channel is Q � �ghbvs, where � is the fluid
density, b the channel width, s the slope of the channel, and
g the gravity constant. The momentum conservation in
fluid mechanics yields a relation between h and v in the
form gh2=2� hv2 � C, where C is a constant. Extracting
h from this relation leads to the (clearly nonconvex) dis-
sipation function
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Q�v� � �bs��v2 �
���������������������
v4 � 2gC

q
�v: (1)

A second example is the solute drag in grain boundary
movement in metal alloys, where a moving interface of
finite thickness carries segregated impurity atoms with a
concentration profile across the interface. Such a local
diffusion process, stationary with respect to the moving
interface, reduces the migration velocity v of the interface
due to the energy dissipated by the local diffusion process.
Prominent approaches by Lücke and Stüwe [7], Cahn [8],
and Hillert [9,10] are reported in the literature; for refer-
ence, see, e.g., Svoboda et al. [11]. For certain values of the
velocity v, one observes an instability corresponding to a
‘‘jerky’’ motion of the interface, as already discussed by
Cahn in his seminal paper [8] in 1962 and later also by
other authors [12–14]. The concept by Svoboda et al. [11]
describes the phenomenon in terms of dissipation and
allows for a difference in the chemical potential of the
segregating species at both boundaries of the interface and
applies an exact solution for the diffusion equation in the
case of an interstitial impurity atom. The second dissipa-
tive mechanism is the interface motion itself and is directly
related to the velocity v by a mobility coefficient M0. The
total dissipation can be expressed in this case as [11]

Q�v� �
v2

M0
�

Q0v2

v2 �Q0=�
; (2)

where Q0 and � are two positive constants. Again, this
dissipation function is clearly nonconvex, which might be
related to the observed instability in the interface
movement.

In the following, we consider an energy dissipationQ�v�
depending on a single variable v and where Q�0� � 0 and
Q�v�> 0, for v > 0. For example, vmay be the velocity of
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a moving interface or the velocity in a channel. Moreover,
the free energy G of the system is supposed to change at a
rate _G depending linearly on the variable v:

_G � �Fv; (3)

where F is the thermodynamic driving force. One may ask
the question under which conditions a planar surface mov-
ing at constant velocity would be stable. Calling dA the
area element on the surface A, the stationary state will be
found by maximizing the total energy dissipationR
AQ�v�dA, where Q�v� is the dissipation of a surface

element moving at velocity v, under the constraint of total
energy conservation
Z
A
�Q�v� � _G�dA �

Z
A
�Q�v� � Fv�dA � 0: (4)

Introducing the Lagrange parameter �, this amounts to
maximizing

R
A�Q�v� � ��Q�v� � Fv��dA or to mini-

mizing
R
A P�v�dA, with respect to the function v� ~x�,

where ~x is a point on the surface A, and

P�v� � ��� 1�Q�v� � �Fv: (5)

A planar surface [with v� ~x� � �v] is a solution of this
problem if �vminimizes P�v� and, according to (4), satisfies

Q� �v� � F �v: (6)

Under these conditions, the Lagrange parameter is

� �
Q0� �v�

Q0� �v� � F
; (7)

where we used the notationQ0 � dQ=dv. Note that, for the
special case of a quadratic energy dissipation (Q�v� / v2),
the coefficient � is simply equal to 2 [from (7) and using
(6)]. In general, inserting (7) into (5) and using (6),
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FIG. 1. Schematic plot of the energy dissipation as function of
interface velocity. For a convex function (left), the intersection of
Fv (arrow) with a chord (broken line) starting at any two
positions on Q�v� corresponds to a lower dissipation (�) than
the intersection with Q�v� itself (�). This can be reversed for
nonconvex functions (right). The convex envelope (broken line)
touches the dissipation function at the lower (SL) and higher
(SH) limits of stability. ML and MH indicate the lower and the
higher limits of metastability.
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P�v� � �Q� �v�K�v�=K� �v�; (8)

where

K�v� � Q�v� � vQ0� �v�: (9)

This implies that P� �v� � �Q� �v�, P0� �v� � 0, and P00� �v� �
�Q00� �v�Q� �v�=K� �v�. If Q�v� is a convex function, then
Q00� �v�> 0 and [sinceQ�0� � 0] the convexity also implies
that K� �v�< 0. If the function is concave, Q00� �v�< 0 and
K� �v�> 0. In both cases, P00� �v�> 0 and �v minimizes P�v�.
Hence, for a convex (or concave) energy dissipation func-
tion (that is, without an inflection point), a stable state does
exist with a constant velocity profile �v. However, ifQ�v� is
nonconvex, P00� �v� may take negative values and, as a con-
sequence, the velocity profile may become unstable and
split, say, into vSL and vSH. This is illustrated in Fig. 1: if
the surface splits into two parts moving at different veloc-
ities, the total energy dissipated is given as a linear combi-
nation of the contributions by the two parts. This linear
combination corresponds to a straight line (shown as bro-
ken line) in Fig. 1. The dissipation under a given driving
force F can finally be read from the intersection of the
broken line with the curve Q�v� � Fv [that is, Eq. (6),
shown by long arrows in Fig. 1]. It is obvious from the
figure that—in the case of a convexQ�v�—there is always
a higher dissipation for the planar surface propagating at
constant speed (since �>� in the figure), while this is not
the case for nonconvex Q�v�. This construction shows that
stationary states are always located on the convex (or
concave) envelope of Q�v�, that is, on the straight line
being the common tangent which makes Q into a fully
convex (or concave) function. Between the lower and the
higher limits of stability (SL and SH in Fig. 1, right), a
planar surface is not stable and stable propagation is only
possible for a surface split into parts moving at speeds vSL

and vSH. From the intersection labeled � in Fig. 1, it is
possible to calculate the fractions of the surface, �SL and
�SH, which propagate at velocities vSL and vSH, respec-
tively:

�SL � 1� �SH �
QSH � FvSH

QSH �QSL � F�vSH � vSL�
: (10)

With the stability analysis presented here, we cannot pre-
dict how the instability actually develops into the breaking
up of the surface into pieces moving at different velocities.
It is clear, however, that there is the tendency towards the
development of a chaotic (or jerky) motion with different
velocities.

This is somewhat analogous to the case of equilibrium
thermodynamics [5]: when the free energy f�c� is convex
with respect to the thermodynamic variable (for example,
the composition c of a solution), then the homogeneous
state is stable. If, on the contrary, the free energy is non-
convex (for example, of double-well shape), phase separa-
tion (between solutions of different composition) occurs.
In such cases, the true equilibrium curve is given by the
2-2
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FIG. 2. Relation between driving force and interface velocity
for the solute drag problem, based on the energy dissipation
function in Fig. 1. Stable, metastable, and unstable branches are
shown by full, broken, and dotted lines, respectively. The shaded
area indicates the coexistence region of two velocities.
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convex envelope of the free-energy function. If the starting
composition �c is in an interval of cwhere the free energy is
nonconvex, separation occurs between two phases of com-
position given by Gibbs’ double-tangent construction [15].
The stability of such mixtures has been extensively dis-
cussed within the theory of spinodal decomposition pro-
posed by Cahn and Hilliard [16]. According to this
analysis, mixtures which are not thermodynamically stable
would be clearly unstable if the average composition �c is
such that f00� �c�< 0 and metastable otherwise [15]. It is
straightforward to apply the same type of analysis here to
the nonequilibrium case, discussing the stability of homo-
geneous stationary states. The (static) composition variable
c has to be replaced by the velocity v, and the free-energy
function by the dissipation function.

Indeed, the present theory also predicts metastable states
near the stability limits, in analogy to the case of equilib-
rium mixtures. When looking at Fig. 1 (right), the dissipa-
tion function stays locally convex when crossing the point
SH from above or SL from below. For the following
discussion, we use the notation F� (with � �
SL; SH;ML;MH) to denote the driving force at the lower
and higher limits of stability and of metastability, respec-
tively (see Fig. 1). The corresponding velocity v� is given
by the relation (6) Q�v�� � Q� � F�v�. Using these
notations, a planar surface separating the two phases and
propagating at sufficiently high ( �v > vSH) or low ( �v <
vSL) velocity will be stable. When crossing the lower
stability limit SL, the flat surface stays metastable, as can
be seen from the following analysis. Only large fluctua-
tions are able to drive the planar interface out of its
metastable stationary state. Indeed, when there is a small
fluctuation of interface velocity v� ~x� around the value �v,
then Eq. (8) reduces to

P�v� ~x��� P� �v� 	 P00� �v��v� ~x� � �v�2=2; (11)

and

Z
A
�P�v� ~x��� P� �v��dA 
 0 (12)

for �v in the interval between SL and ML, which shows that
the planar surface is stable against small fluctuations of
velocity.

To discuss the situation in more detail, it is useful to plot
the velocity �v of the stationary state as a function of the
externally acting driving force F (see Fig. 2). In this figure
the energy dissipation function (Fig. 1) has been replotted
using Eq. (6) to show the relation between velocity and
driving force. Very similar functions have also been dis-
cussed in the context of solute drag in phase boundaries,
for example, in [17,18]. Figure 2 shows clearly that—at
small driving force—the planar interface is stable. When
the driving force reaches the value FSL (which is deter-
mined by the double-tangent construction in Fig. 1), the
planar interface does not anymore maximize the energy
19570
dissipation. As discussed earlier, the stable extremum
would be a situation where the interface breaks up into
pieces with different velocity, vSL or vSH. This very com-
plex (jerky) motion will, however, only be reached if the
planar interface is severely disturbed by a large fluctuation.
According to Eq. (8), the planar surface will remain meta-
stable, as long as

P00� �v� �
Q� �v�Q00� �v�

�vQ0� �v� �Q� �v�

 0: (13)

For small velocities up to the inflection point ML in Fig. 1,
all three quantities, Q� �v�, Q00� �v�, �vQ0� �v� �Q� �v� are posi-
tive and the planar interface remains metastable.
Metastability is lost at the inflection point because Q00� �v�
changes sign. The situation is slightly different when com-
ing from the large velocity side. It is true that after crossing
the stability point SH by lowering the speed, the planar
surface also remains metastable. However—in the specific
example of Fig. 1—metastability is lost because of a
change in sign of �vQ0� �v� �Q� �v�, which occurs before
the inflection point is reached. This is why the region of
metastability is very small on the large velocity side. In
Fig. 2, metastable branches are shown by broken lines. At
the large velocity side, the metastable branch is extremely
small.

Most earlier theories [8–10,17,18] have studied the sol-
ute drag problem in terms of Fig. 2 and discussed the
instability based on the fact that, in a certain interval of
driving forces, there are two solutions for the velocity. The
present treatment, based on an analysis of the dissipation
function (Fig. 1), allows an easy calculation of the stability
limits (which is very hard from an analysis of Fig. 2 alone)
and, in addition, predicts metastable states next to the
stability limits.

For comparison, we now also analyze the case of the
hydraulic jump, Eq. (1). The shape of the dissipation
function is quite different (see Fig. 3). It starts out as a
concave function, goes through a maximum at SL, and then
has an inflection point at ML. The analysis according to
2-3
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FIG. 3. Schematic plot of Q and F as functions of v according
to Eq. (1). The lower stability limit SL corresponds to the
maximum of Q and the limit of metastability ML to the in-
flection point. The convex envelope is shown by a dotted line.
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Eq. (8) shows that the flow in the channel corresponds to a
stable stationary state at small velocities. The reason is that
Q00� �v�< 0 and K� �v�> 0 at small �v. In fact, K� �v�> 0 for
all values of �v, but Q00� �v� changes sign at the inflection
point. As a consequence, the branch �v > vML is unstable.
The concave envelope of Q�v� is shown by a dotted line in
Fig. 3. This line touches the Q�v� curve at the maximum
(corresponding to SL) and is horizontal, because the higher
limit of stability (SH) is at infinite speed. The maximum
position of the curve is given [according to Eq. (1)] as
vSL � �2gC=3�1=4, and vSH � 1. Inserting this into
Eq. (10), it follows that �SL � 1 and �SH � 0. This means
that there is not the coexistence of two stable stationary
states in this case, but that stability ends at vSL. For a
channel with constant width and slope, one can group all
constant quantities into a single one k � �gbs. Hence,
Q � khv and F � kh. For large water depths down to
hSL � QSL=�kvSL�, the flow in the channel is stable. It is
metastable for hSL > h> hML � QML=�kvML� and un-
stable for smaller water depths. The interesting case is
the metastable state, where a fluctuation may lead to a
sudden increase of the water depth.

In conclusion, we have shown that the principle of maxi-
mizing the total energy dissipation can even be applied to
complex situations where the dissipation function is non-
19570
convex. In such situations, however, stationary states may
become metastable or unstable. Even the coexistence of
two stationary states, similarly to the coexistence of two
phases in equilibrium thermodynamics, emerges as a pos-
sibility. General predictions are difficult as the stability of
stationary states depends on the details of the dissipation
function and boundary conditions. Here the problem has
been solved for two ‘‘typical’’ problems in order to illus-
trate the procedure.
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[4] J. Svoboda, E. Gamsjäger, F. D. Fischer, and P. Fratzl,

Acta Mater. 52, 959 (2004).
[5] Phase Transformations in Materials, edited by G. Kostorz

(Wiley, New York, 2001).
[6] J. K. Vennard and R. L. Street, Elementary Fluid

Mechanics (Wiley, New York, 1976), 5th ed..
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