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Room temperature () elastic constants and compressive yield strengths of ~30 metallic glasses
reveal an average shear limit y- = 0.0267 = 0.0020, where 7y = G is the maximum resolved shear
stress at yielding, and G the shear modulus. The 7y, values for individual glasses are correlated with
t=Tg/ T,, and vy for a single glass follows the same correlation (vs t =T / T,). A cooperative shear
model, inspired by Frenkel’s analysis of the shear strength of solids, is proposed. Using a scaling analysis
leads to a universal law 707/G = vy — v (1) for the flow stress at finite T where yco = (0.036 =

0.002) and y¢; = (0.016 = 0.002).
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For a dislocation free crystal, Frenkel [1] calculated the
theoretical shear strength by assuming cooperative shear-
ing obtaining 7y = G/5. The yield strength of metallic
glasses is thought to be determined by the cooperative
shear motion of atomic clusters termed shear transforma-
tion zones (STZ’s) [2—5]. Compressive strengths of oy ~
0.02Y are observed with a weak dependence on normal
stress or pressure [6,7]. Here, we report elastic constants
and compressive yield stresses for ~30 metallic glasses.
Yielding at Ty can be described by a critical shear strain
vc = 0.0267 = 0.0020; a better description of y. includes
a dependence on the dimensionless temperature t = 7/T,.
A cooperative shear model (CSM) is introduced that pre-
dicts a temperature dependent 7 (or ) having a “T%/3”
form. The CSM is based on the concept of inherent states
(IS) and potential energy landscapes (PEL) developed by
Stillinger et al. [8,9], Wales et al. [10,11], and Milandro
and Lacks [12].

Table I shows measured density, ambient T elastic con-
stants Y, G, B, v (Poisson’s ratio), yield strength in com-
pression, o, elastic strain limit (oy/Y), and glass
transition temperature, T,, for ~30 metallic glasses [13—
29]. Note that oy /Y varies over the range 0.014 < gy <
0.022. Ignoring the small normal stress dependence of the
shear yield strength [6,7,13,14], one can plot 7y vs G
(7y = oy/2) to find the corresponding elastic shear strain
limit as shown in Fig. 1. We obtain linear correlation with a
best fit of yo = 7y/G = 0.0267 = 0.0020, but there re-
mains significant scatter in y.. Examination shows that
glasses with low 7', tend to exhibit smaller y. than those
with high T,. Consider the reduced temperature, =
Tg/T,. We plot yc for each individual alloy vs 7 (open
circles) in Fig. 2. The plot includes data (filled circles) for
the temperature dependent 7y of Vitreloy 1 (fixed T, and
varying T) by Lu et al. [13], low temperature data for bulk
LassAl,sCuyy  [30] (squares), melt spun ribbons of
Pd85‘58i14‘5 [31] (Stars), and Fe40Ni40P14B6 [31] (hOriZOﬂtal
triangles), and bulk Pd;; sCugSijg 5 [2(b),24] (vertical tri-
angles). The data for ribbons were ‘“normalized’’ to obtain
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agreement with other data at 7 = 0 K (G was not known
for the ribbons). The “peak flow stress” of Vitreloy 1 vs T
(from T to above T,) was taken as 7y. Figure 2 shows that
vc 1s a systematic function of ¢.

Following Frenkel, the elastic energy of an STZ is here
described by a periodic elastic energy density vs strain:

G(y) = ¢o/2[1 = cos(my/2yc)]= dosin’(my/4yc) (1)

with a minima at y = 0, a barrier at 2y, (yc is the yield
strain), and a total barrier energy density ¢,. The critical
yield stress is ¢/ |, = 7. = Tho/4y . For the unstressed
solid, G = ¢"|,—y giving ¢¢ = (8/7)Gy>. The “free
enthalpy” density of the stressed STZ is h(y) = ¢(y) —
7. In an unstressed solid, the total potential energy barrier
foran STZis W = ¢o{Q = (8/7*)Gy2{Q, where () is
the actual volume of the STZ defined by the plastic “core,”
and { is a correction factor arising from matrix confine-
ment of a “dressed” STZ [2,32]. For a Gaussian shaped
strain fluctuation with core diameter o, one can estimate
{ ~2-4 and W ~ 3Q ¢,. The details of ¢ depend on the
shape and size of the fluctuation and the elastic constants G
and » for the material.

For an infinite crystal of indistinguishable atoms, the
periodic minima of ¢(y) are equivalent; i.e., there is no
configurational entropy. For a glass, there are I' stable
atomic configurations or inherent states (IS’s) [8,9,33]
with I' = exp(NAs), where N is the number of atoms in
the STZ, and As the configurational entropy per atom of
the IS’s or “basin denumeration function” [9,33]. While
Asc is well defined in the thermodynamic limit N — oo, it
decreases [9,10,33] for small N. The characteristic strain
(7y¢) or “configurational displacement” separating neigh-
boring configurations will increase for N ~ 100 or less. On
the other hand, the total barrier W also scales with STZ
volume Q (or N). Therefore W ~ 7y %() is expected have a
minimum for some intermediate N*. We estimate that N* is
likely of order ~100 atoms. Yielding occurs when the
applied stress causes a critical density of ‘““minimum’”
barrier STZ’s to become unstable.
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TABLE I. Summary of data on alloy compositions and properties used in this Letter.
Property
Alloy p Y) G B oy T,
(g/cc) (GPa) (GPa) (GPa) v (GPa) (K) a,/Y Ref.
1. Zr41,Ti3gNijgCupp 5Bess s 5.9 95 34.1 114.1 0.352 1.86 618 0.0196 [13-15]
97.2 359 111.2 0.354 1.85 613 0.0190
2. ZrygNbgNij,Cuy4Beg 6.7 93.9 343 118 0.367 1.95 620 0.0208 [15]
3. ZrssTisCuyyNijpAlyg 6.62 85 31 118 0.375 1.63 625 0.0192 [15]
4. Zrs; sNbsCuys54NijpAlyg 6.5 84.7 30.8 117.6 0.379 1.58 663 0.0187 [15]
5. Zrs5Al19CooCuy 6.2 101.7 37.6 114.9 0.352 22 733 0.0216 [16]
6. Pd;Cu3oNigPyg 9.28 92 345 151.8 0.399 1.72 593 0.0187 [17]
7. Pd4yCuzoNijoPyg 9.28 92 33 146 0.394 1.72 593 0.0187 [18]
8. PdoCu3oNi;gPyg 9.30 92 35.8 144.7 0.394 1.75 595 0.0190 [17]
9. PdgyCuyoPsyg 9.78 91 323 167 0.409 1.70 604 0.0187 [15]
10. Pd4CuyoPs 9.30 93 332 158 0.402 1.75 548 0.0188 [15]
11. NigsTirgZrrsAly 6.4 109.3 40.2 129.6 0.359 2.37 791 0.0217 [19]
12. NiggTi7Zr,3Al1oCus 6.48 127.6 473 140.7 0.349 2.59 862 0.0203 [19]
13. NiggNbs35Sn; 8.64 183.7 66.32 267 0.385 3.85 885 0.0210 [20]
14. NigySng(Nbg gTag )34 9.24 161.3 59.41 189 0.357 3.50 875 0.0217 [16]
15. NigySng(Nbg ¢ Tag 4)34 9.80 163.7 60.1 197.6 0.361 3.58 882 0.0219 [16]
16. CugyZrsg 8.07 92 34 104.3 0.352 2.0 787 0.0217 [21]
17. CuygZrsy 7.62 83.5 30.0 128.5 0.391 1.40 696 0.0168 [22]
18. CuyeZrypAl; Y5 7.23 84.6 31 104.1 0.364 1.60 713 0.0189 [23]
19. Pd;75CugSig 5 104 89.7 31.8 166 0.409 1.5 550 0.0167 [24]
20. PtgoNi 5Py 15.7 96.1 33.8 202 0.420 14 488 0.0146 [25]
21. Pts75Cuy47NisPy g 15.2 95.7 334 243.2 0.434 1.45 490 0.0151 [26]
22. PdgyNi gPyg 10.1 91.9 32.7 166 0.405 1.55 452 0.0169 [24]
23. MgGd,,Cuys 4.04 49.1 18.6 46.3 0.32 0.98 428 0.020 [16]
24. LassAl,5CuygNisCos 6.0 41.9 15.6 44.2 0.342 0.85 430 0.0203 [15]
25. CeqpAl oNijoCuy 6.67 30.3 11.5 27 0.313 0.65 359 0.0215 [27]
26. CusgHf;3Al, 11.0 113 42 132.8 0.358 22 774 0.0195 [16]
27. Cusy.5Hf 7 5Ti;5 9.91 103 37.3 117.5 0.356 1.94 729 0.0188 [16]
28. Feg;Mn;oCryMogEr; Ci5Bg 6.89 193 75 146 0.280 4.16 870 0.0216 [28]
29. Fes3CrisMo4Er;C5Bg 6.92 195 75 180 0.32 42 860 0.0215 [28]
30. AuygsAgssPdy3Cuy69Sii63 11.6 74.4 26.5 132.3 0.406 1.20 405 0.0141 [29]
31. AussCusysSiyg 12.2 69.8 24.6 139.8 0.417 1.00 348 0.0143 [29]

The barrier at finite 7, W, approaches zero as 7 — 7. It
is easily shown that ¢, (barrier energy density at finite
T — 7¢) decreases as ¢, ~ (rc — 7)*/2 while the shear
modulus (at finite 7) G, ~ (7 — 7)'/2. The strain differ-
ence between the energy minimum and barrier configura-
tion (saddle point) scales as 8y, ~ (7 — 7)"/2 as 7 — 7.
Mechanical instability of the STZ at 7. takes the form of a
“fold catastrophe’ [11,34]. For 7 — 7, the parameters
W, = ¢o,{Q, 8y,, and G, are related by the scaling law

¢07’/(GT(577’)2) =R = 1/4’

(2

so that W, = G,y..2({Q,
where R is the “fold ratio.” Wales et al. [11,34] have
shown that, for binary Lennard Jones (LJ) glasses
(256 atoms) and liquid salt clusters (71 atoms), this scaling
relation holds on average, even far from 7.. For the
Frenkel landscape of Eq. (1), R actually varies from 1/4

to 7%/32 as 7 varies from 7. down to 0. Analysis of
simulation results [12] for shear induced destabilization
of individual IS’s of a 500 atom LJ glass shows that Eq. (2)
is obeyed (within 10%) over 0 < 7 < 7. Assuming scal-
ing holds on average:

W, = Wo(D)l(7¢ — T)/Tc]3/2 = ¢ol(rc — T)/TCP/Z{Q
= 4RGoryPl(rc — /7P, 3)

where G is the shear modulus of the unstressed glass
which includes a weak dependence on T (Debye-Griineisen
thermal expansion) for a fixed glass configuration. The
scaling law holds for any function ¢(y) for which
d>¢(y)/dy? is analytic around the inflection point. At
finite 7" and applied 7, thermal strain fluctuations will carry
the system over the barrier W . For plastic flow to occur on
a given time scale (or strain rate 7y), the rate of barrier
crossing must reach a critical value comparable to . Using
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FIG. 1. Experimental shear stress at yielding, 7y = oy/2 vs
shear modulus G at room temperature for 30 bulk metallic
glasses.

an attempt frequency w, requires
yielding rate = wqexp(—W,/kT) = Cy, 4
with C a dimensionless constant of order unity, and thus
W, /kT = —In(Cy/w)
= {4RGory*(rco = Tcr) /T PPLQY/KT. (5)

Here, 7 is the yield stress at T = 0, while 77 is at finite
T. One obtains

Ter = Teo — TeolkTIn(wo/C¥)/(4RGory 2L Q). (6)

At T=T, and 7=0, the barrier is Wy(T,) =
4RGory v L. If T, itself is defined by a critical barrier
crossing rate due to fluctuations, one obtains Wy(T,) =
BT,, with B constant. This yields

= BT [(tc — 7)/7cP/2 (7)

Equation (6) for the yield stress becomes

Ter = Tco — Teol(k/ B) In(wo/C¥)(Gor/Gorg) P/ 123,
3)

where t = T/T,. The factor (Gor/Gor,) incorporates the
weak dependence of G on the thermal expansion of a fixed
glass configuration. Gyy has been experimentally deter-
mined [15,18] to be a linear function of 7. For Vitreloy 1
[15], one finds dGyr/dT ~ 4 X 1073 (GPa/K) with G, ~
37 GPaat O K. Since the thermal expansion coefficient will
drop at very low T, one obtains an upper bound for the
fractional change in (Gor/Gor,) from 0 K'to T, as A, =
(Ty/Go)(dGor/dT) ~ 0.07. Similarly, we estimate A, ~
0.11 for Pd(NigP, [18]. The  dependence of (Gor/Gor,)
gives a maximum correction to the second term in Eq. (8)
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FIG. 2 (color online). Experimental shear strain at yielding
(1y/G) vs t =T/T,. Small open circles show results at room
temperature on 30 alloys of varying T',. Solid symbols show the ¢
dependence of 7y/G for various individual alloys as indicated.
The reader is referred to the text for references and details.

at 1~ 1 (near T,) of order 5%—7%. The logarithmic
term in Eq. (8) involves w, and is estimated to be the
frequency of shear phonon of nm wavelength (~10'* Hz).
With typical strain rates (in yielding experiments) of
1072-10"* s~!, we have In(w,/C7) ~ 30. An order of
magnitude change in either w, or ¥ changes the loga-
rithmic term by ~5%. The dependence of 7.7 on T is
thus dominated by the 72/3 term.

The dotted curve in Fig. 2 was obtained using Eq. (8)
(square bracket taken as a constant) to ‘““fit” the depen-
dence of 7¢p at Tk (fixed T) and varying T, for the 30
metallic glasses (open circles) and the ¢ dependence of
individual alloys (filled symbols). This fit gives 74/G =
Yco T Yci1t" where yy = 0.036 £ 0.002, y- = 0.016 =
0.002, and m = 0.62 = 0.2. Equation (8) explains both the
T dependence of 7y for all individual amorphous alloys
and the “T, dependence” for 30 glasses at fixed Trwith an
exponent “‘m” consistent (within error) with the predicted
value “2/3.” The coefficients vy, and vy, are approxi-
mately universal constants. The present classical model is
expected to break down at very low 7. Low T data shown
in the inset of Fig. 2 suggest “quantum effects’ on yielding
when shear phonon modes “freeze out” at very low 7.

For the CSM, the elastic response of an STZ is nonlinear
as 7 increases from 0 to 7. The actual critical strain at
T¢ is not 7¢7/G (as in experiments), but rather 77.7/2G
with the factor 7/2 arising from nonlinear elasticity. The
role of nonlinear elasticity and nonaffine atomic displace-
ments in the shear response of an STZ has been recently
discussed [35,36]. In both the Frenkel model and simula-
tions [35], the compliance at finite stress, G, !, diverges at
7c. Experimentally, one measures yield stress, not strain,
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so the experimental . at yield underestimates the actual
strain of the STZ. Further, the macroscopic material com-
prises a statistical distribution of STZ’s with distributed
values of G and 7 varying with location and orientation.
Yielding is expected when a critical fraction of unstable
STZ’s results in global instability.

In conclusion, plastic yielding of metallic glasses at Tp
is roughly described by an average elastic shear limit
criterion, 7y = y~G, where G is the shear modulus of
the unstressed glass, and y- = 0.0267 = 0.0020. Closer
analysis reveals that y. depends on r= T/ T,. A CSM
inspired by Frenkel’s work and recent molecular dynamics
simulations is developed to explain these empirical find-
ings. Yielding is treated as a fold catastrophe obeying a
scaling law W(7)/[G,(8)*] = R. Applied on average,
this scaling law leads to a “23 law,” 7c7/G =
Yoo — Yo (0?3, for flow stress of metallic glasses
wherey, and vy, are weakly material dependent. A fit
to all experimental data yields ysy = (0.036 = 0.002),
vep = (0.016 = 0.002), and an exponent m = 0.62 =
0.2. A similar derivation of the “T%/3” law has appeared
in the literature on yielding in crystals [37]. Gaunt also
derived a similar law for thermally activated domain wall
motion in disordered magnets [38]. To the extent that
plastic yielding in nonmetallic glasses (oxides, molecular
glasses, etc.) is a fold catastrophe, one might expect Eq. (8)
to be valid more generally although -, may vary. The
present CSM model may establish a basis for a broader
understanding of glass physics.
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