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Room temperature (TR) elastic constants and compressive yield strengths of �30 metallic glasses
reveal an average shear limit �C � 0:0267� 0:0020, where �Y � �CG is the maximum resolved shear
stress at yielding, and G the shear modulus. The �C values for individual glasses are correlated with
t � TR=Tg, and �C for a single glass follows the same correlation (vs t � T=Tg). A cooperative shear
model, inspired by Frenkel’s analysis of the shear strength of solids, is proposed. Using a scaling analysis
leads to a universal law �CT=G � �C0 � �C1�t�

2=3 for the flow stress at finite T where �C0 � �0:036�
0:002� and �C1 � �0:016� 0:002�.
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For a dislocation free crystal, Frenkel [1] calculated the
theoretical shear strength by assuming cooperative shear-
ing obtaining �Y � G=5. The yield strength of metallic
glasses is thought to be determined by the cooperative
shear motion of atomic clusters termed shear transforma-
tion zones (STZ’s) [2–5]. Compressive strengths of �Y �
0:02Y are observed with a weak dependence on normal
stress or pressure [6,7]. Here, we report elastic constants
and compressive yield stresses for �30 metallic glasses.
Yielding at TR can be described by a critical shear strain
�C � 0:0267� 0:0020; a better description of �C includes
a dependence on the dimensionless temperature t � T=Tg.
A cooperative shear model (CSM) is introduced that pre-
dicts a temperature dependent �C (or �C) having a ‘‘T2=3’’
form. The CSM is based on the concept of inherent states
(IS) and potential energy landscapes (PEL) developed by
Stillinger et al. [8,9], Wales et al. [10,11], and Milandro
and Lacks [12].

Table I shows measured density, ambient T elastic con-
stants Y, G, B, � (Poisson’s ratio), yield strength in com-
pression, �y, elastic strain limit (�Y=Y), and glass
transition temperature, Tg, for �30 metallic glasses [13–
29]. Note that �Y=Y varies over the range 0:014< "Y <
0:022. Ignoring the small normal stress dependence of the
shear yield strength [6,7,13,14], one can plot �Y vs G
(�Y � �Y=2) to find the corresponding elastic shear strain
limit as shown in Fig. 1. We obtain linear correlation with a
best fit of �C � �Y=G � 0:0267� 0:0020, but there re-
mains significant scatter in �C. Examination shows that
glasses with low Tg tend to exhibit smaller �C than those
with high Tg. Consider the reduced temperature, t �
TR=Tg. We plot �C for each individual alloy vs t (open
circles) in Fig. 2. The plot includes data (filled circles) for
the temperature dependent �Y of Vitreloy 1 (fixed Tg and
varying T) by Lu et al. [13], low temperature data for bulk
La55Al25Cu20 [30] (squares), melt spun ribbons of
Pd85:5Si14:5 [31] (stars), and Fe40Ni40P14B6 [31] (horizontal
triangles), and bulk Pd77:5Cu6Si16:5 [2(b),24] (vertical tri-
angles). The data for ribbons were ‘‘normalized’’ to obtain
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agreement with other data at T � 0 K (G was not known
for the ribbons). The ‘‘peak flow stress’’ of Vitreloy 1 vs T
(from TR to above Tg) was taken as �Y . Figure 2 shows that
�C is a systematic function of t.

Following Frenkel, the elastic energy of an STZ is here
described by a periodic elastic energy density vs strain:

������0=2�1�cos���=2�C�	��0sin2���=4�C� (1)

with a minima at � � 0, a barrier at 2�C (�C is the yield
strain), and a total barrier energy density �0. The critical
yield stress is�0jmax � �c � ��0=4�C. For the unstressed
solid, G � �00j��0 giving �0 � �8=�

2�G�C
2. The ‘‘free

enthalpy’’ density of the stressed STZ is h��� � ���� �
��. In an unstressed solid, the total potential energy barrier
for an STZ is W � �0�� � �8=�2�G�C

2��, where � is
the actual volume of the STZ defined by the plastic ‘‘core,’’
and � is a correction factor arising from matrix confine-
ment of a ‘‘dressed’’ STZ [2,32]. For a Gaussian shaped
strain fluctuation with core diameter �, one can estimate
� � 2–4 and W � 3��0. The details of � depend on the
shape and size of the fluctuation and the elastic constantsG
and � for the material.

For an infinite crystal of indistinguishable atoms, the
periodic minima of ���� are equivalent; i.e., there is no
configurational entropy. For a glass, there are � stable
atomic configurations or inherent states (IS’s) [8,9,33]
with � � exp�N�sC�, where N is the number of atoms in
the STZ, and �sC the configurational entropy per atom of
the IS’s or ‘‘basin denumeration function’’ [9,33]. While
�sC is well defined in the thermodynamic limit N ! 1, it
decreases [9,10,33] for small N. The characteristic strain
(�C) or ‘‘configurational displacement’’ separating neigh-
boring configurations will increase for N � 100 or less. On
the other hand, the total barrier W also scales with STZ
volume � (or N). Therefore W � �C

2� is expected have a
minimum for some intermediate N
. We estimate thatN
 is
likely of order �100 atoms. Yielding occurs when the
applied stress causes a critical density of ‘‘minimum’’
barrier STZ’s to become unstable.
1-1 © 2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.95.195501


TABLE I. Summary of data on alloy compositions and properties used in this Letter.

Property
Alloy 	 Y) G B �y Tg

(g=cc) (GPa) (GPa) (GPa) � (GPa) (K) �y=Y Ref.

1. Zr41:2Ti13:8Ni10Cu12:5Be22:5 5.9 95 34.1 114.1 0.352 1.86 618 0.0196 [13–15]
97.2 35.9 111.2 0.354 1.85 613 0.0190

2. Zr48Nb8Ni12Cu14Be18 6.7 93.9 34.3 118 0.367 1.95 620 0.0208 [15]
3. Zr55Ti5Cu20Ni10Al10 6.62 85 31 118 0.375 1.63 625 0.0192 [15]
4. Zr57:5Nb5Cu15:4Ni12Al10 6.5 84.7 30.8 117.6 0.379 1.58 663 0.0187 [15]
5. Zr55Al19Co19Cu7 6.2 101.7 37.6 114.9 0.352 2.2 733 0.0216 [16]
6. Pd40Cu30Ni10P20 9.28 92 34.5 151.8 0.399 1.72 593 0.0187 [17]
7. Pd40Cu30Ni10P20 9.28 92 33 146 0.394 1.72 593 0.0187 [18]
8. Pd40Cu30Ni10P20 9.30 92 35.8 144.7 0.394 1.75 595 0.0190 [17]
9. Pd60Cu20P20 9.78 91 32.3 167 0.409 1.70 604 0.0187 [15]

10. Pd40Cu40P20 9.30 93 33.2 158 0.402 1.75 548 0.0188 [15]
11. Ni45Ti20Zr25Al10 6.4 109.3 40.2 129.6 0.359 2.37 791 0.0217 [19]
12. Ni40Ti17Zr28Al10Cu5 6.48 127.6 47.3 140.7 0.349 2.59 862 0.0203 [19]
13. Ni60Nb35Sn5 8.64 183.7 66.32 267 0.385 3.85 885 0.0210 [20]
14. Ni60Sn6�Nb0:8Ta0:2�34 9.24 161.3 59.41 189 0.357 3.50 875 0.0217 [16]
15. Ni60Sn6�Nb0:6Ta0:4�34 9.80 163.7 60.1 197.6 0.361 3.58 882 0.0219 [16]
16. Cu64Zr36 8.07 92 34 104.3 0.352 2.0 787 0.0217 [21]
17. Cu46Zr54 7.62 83.5 30.0 128.5 0.391 1.40 696 0.0168 [22]
18. Cu46Zr42Al7Y5 7.23 84.6 31 104.1 0.364 1.60 713 0.0189 [23]
19. Pd77:5Cu6Si16:5 10.4 89.7 31.8 166 0.409 1.5 550 0.0167 [24]
20. Pt60Ni15P25 15.7 96.1 33.8 202 0.420 1.4 488 0.0146 [25]
21. Pt57:5Cu14:7Ni5P22:8 15.2 95.7 33.4 243.2 0.434 1.45 490 0.0151 [26]
22. Pd64Ni16P20 10.1 91.9 32.7 166 0.405 1.55 452 0.0169 [24]
23. MgGd10Cu25 4.04 49.1 18.6 46.3 0.32 0.98 428 0.020 [16]
24. La55Al25Cu10Ni5Co5 6.0 41.9 15.6 44.2 0.342 0.85 430 0.0203 [15]
25. Ce70Al10Ni10Cu10 6.67 30.3 11.5 27 0.313 0.65 359 0.0215 [27]
26. Cu50Hf43Al7 11.0 113 42 132.8 0.358 2.2 774 0.0195 [16]
27. Cu57:5Hf27:5Ti15 9.91 103 37.3 117.5 0.356 1.94 729 0.0188 [16]
28. Fe61Mn10Cr4Mo6Er1C15B6 6.89 193 75 146 0.280 4.16 870 0.0216 [28]
29. Fe53Cr15Mo14Er1C15B6 6.92 195 75 180 0.32 4.2 860 0.0215 [28]
30. Au49:5Ag5:5Pd2:3Cu26:9Si16:3 11.6 74.4 26.5 132.3 0.406 1.20 405 0.0141 [29]
31. Au55Cu25Si20 12.2 69.8 24.6 139.8 0.417 1.00 348 0.0143 [29]
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The barrier at finite �,W�, approaches zero as �! �C. It
is easily shown that �0� (barrier energy density at finite
�! �C) decreases as �0� � ��C � ��3=2 while the shear
modulus (at finite �) G� � ��C � ��

1=2. The strain differ-
ence between the energy minimum and barrier configura-
tion (saddle point) scales as ��� � ��C � ��1=2 as �! �C.
Mechanical instability of the STZ at �C takes the form of a
‘‘fold catastrophe’’ [11,34]. For �! �C, the parameters
W� � �0���, ���, and G�, are related by the scaling law

�0�=�G������
2� � R � 1=4;

so that W� � G��C�
2��;

(2)

where R is the ‘‘fold ratio.’’ Wales et al. [11,34] have
shown that, for binary Lennard Jones (LJ) glasses
(256 atoms) and liquid salt clusters (71 atoms), this scaling
relation holds on average, even far from �C. For the
Frenkel landscape of Eq. (1), R actually varies from 1=4
19550
to �2=32 as � varies from �C down to 0. Analysis of
simulation results [12] for shear induced destabilization
of individual IS’s of a 500 atom LJ glass shows that Eq. (2)
is obeyed (within 10%) over 0< �< �C. Assuming scal-
ing holds on average:

W� � W0�T����C � ��=�C	3=2 � �0���C � ��=�C	3=2��

� 4RG0T�C
2���C � ��=�C	

3=2��; (3)

where G0T is the shear modulus of the unstressed glass
which includes a weak dependence on T (Debye-Grüneisen
thermal expansion) for a fixed glass configuration. The
scaling law holds for any function ���� for which
d2����=d�2 is analytic around the inflection point. At
finite T and applied �, thermal strain fluctuations will carry
the system over the barrier W�. For plastic flow to occur on
a given time scale (or strain rate _�), the rate of barrier
crossing must reach a critical value comparable to _�. Using
1-2



FIG. 2 (color online). Experimental shear strain at yielding
(�Y=G) vs t � T=Tg. Small open circles show results at room
temperature on 30 alloys of varying Tg. Solid symbols show the t
dependence of �Y=G for various individual alloys as indicated.
The reader is referred to the text for references and details.

FIG. 1. Experimental shear stress at yielding, �Y � �Y=2 vs
shear modulus G at room temperature for 30 bulk metallic
glasses.

PRL 95, 195501 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
4 NOVEMBER 2005
an attempt frequency !0 requires

yielding rate � !0 exp��W�=kT� � C _�; (4)

with C a dimensionless constant of order unity, and thus

W�=kT � � ln�C _�=!0�

� f4RG0T�C
2���C0 � �CT�=�C	3=2��g=kT: (5)

Here, �C0 is the yield stress at T � 0, while �CT is at finite
T. One obtains

�CT��C0��C0�kT ln�!0=C _��=�4RG0T�C
2���	2=3: (6)

At T � Tg and � � 0, the barrier is W0�Tg� �
4RG0Tg�C

2��. If Tg itself is defined by a critical barrier
crossing rate due to fluctuations, one obtains W0�Tg� �

Tg, with 
 constant. This yields

W�;Tg � 
Tg���C � ��=�C	3=2: (7)

Equation (6) for the yield stress becomes

�CT � �C0 � �C0��k=
� ln�!0=C _���G0T=G0Tg�	
2=3t2=3;

(8)

where t � T=Tg. The factor (G0T=G0Tg) incorporates the
weak dependence of G on the thermal expansion of a fixed
glass configuration. G0T has been experimentally deter-
mined [15,18] to be a linear function of T. For Vitreloy 1
[15], one finds dG0T=dT � 4� 10�3 �GPa=K� with G0 �
37 GPa at 0 K. Since the thermal expansion coefficient will
drop at very low T, one obtains an upper bound for the
fractional change in �G0T=G0Tg� from 0 K to Tg as �max �

�Tg=G0��dG0T=dT� � 0:07. Similarly, we estimate �max �

0:11 for Pd40Ni40P20 [18]. The t dependence of �G0T=G0Tg�

gives a maximum correction to the second term in Eq. (8)
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at t� 1 (near Tg) of order 5%–7%. The logarithmic
term in Eq. (8) involves !0 and is estimated to be the
frequency of shear phonon of nm wavelength (�1013 Hz).
With typical strain rates (in yielding experiments) of
10�2–10�4 s�1, we have ln�!0=C _�� � 30. An order of
magnitude change in either !0 or _� changes the loga-
rithmic term by �5%. The dependence of �CT on T is
thus dominated by the t2=3 term.

The dotted curve in Fig. 2 was obtained using Eq. (8)
(square bracket taken as a constant) to ‘‘fit’’ the depen-
dence of �CT at TR (fixed T) and varying Tg for the 30
metallic glasses (open circles) and the t dependence of
individual alloys (filled symbols). This fit gives �Y=G �
�C0 � �C1tm where �C0 � 0:036� 0:002, �C1 � 0:016�
0:002, and m � 0:62� 0:2. Equation (8) explains both the
T dependence of �Y for all individual amorphous alloys
and the ‘‘Tg dependence’’ for 30 glasses at fixed TRwith an
exponent ‘‘m’’ consistent (within error) with the predicted
value ‘‘2=3.’’ The coefficients �C0 and �C1 are approxi-
mately universal constants. The present classical model is
expected to break down at very low T. Low T data shown
in the inset of Fig. 2 suggest ‘‘quantum effects’’ on yielding
when shear phonon modes ‘‘freeze out’’ at very low T.

For the CSM, the elastic response of an STZ is nonlinear
as � increases from 0 to �C. The actual critical strain at
�C is not �CT=G (as in experiments), but rather ��CT=2G
with the factor �=2 arising from nonlinear elasticity. The
role of nonlinear elasticity and nonaffine atomic displace-
ments in the shear response of an STZ has been recently
discussed [35,36]. In both the Frenkel model and simula-
tions [35], the compliance at finite stress,G�

�1, diverges at
�C. Experimentally, one measures yield stress, not strain,
1-3
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so the experimental �C at yield underestimates the actual
strain of the STZ. Further, the macroscopic material com-
prises a statistical distribution of STZ’s with distributed
values of G and �C varying with location and orientation.
Yielding is expected when a critical fraction of unstable
STZ’s results in global instability.

In conclusion, plastic yielding of metallic glasses at TR
is roughly described by an average elastic shear limit
criterion, �Y � �CG, where G is the shear modulus of
the unstressed glass, and �C � 0:0267� 0:0020. Closer
analysis reveals that �C depends on t � T=Tg. A CSM
inspired by Frenkel’s work and recent molecular dynamics
simulations is developed to explain these empirical find-
ings. Yielding is treated as a fold catastrophe obeying a
scaling law W���=�G�����2	 � R. Applied on average,
this scaling law leads to a ‘‘t2=3 law,’’ �CT=G �
�C0 � �C1�t�

2=3, for flow stress of metallic glasses
where�C0 and �C1 are weakly material dependent. A fit
to all experimental data yields �C0 � �0:036� 0:002�,
�C1 � �0:016� 0:002�, and an exponent m � 0:62�
0:2. A similar derivation of the ‘‘T2=3’’ law has appeared
in the literature on yielding in crystals [37]. Gaunt also
derived a similar law for thermally activated domain wall
motion in disordered magnets [38]. To the extent that
plastic yielding in nonmetallic glasses (oxides, molecular
glasses, etc.) is a fold catastrophe, one might expect Eq. (8)
to be valid more generally although �C0 may vary. The
present CSM model may establish a basis for a broader
understanding of glass physics.

W. L. J. acknowledges the Defence Advanced Re-
search Projects Agency (DARPA-DSO), ARO Grant
No. DAAD19-01-1-0525 and the National Science
Foundation for providing support under the Caltech
MRSEC program. K. S. acknowledges the support of the
DFG under Grant No. SFB602 and the Leibniz Program.
*Electronic address: wlj@caltech.edu
†Permanent address: I. Physik Institute, University of
Goettingen, Goettingen, Germany.

[1] J. Frenkel, Z. Phys. 37, 572 (1926); see also A. Kelly,
Strong Solids (Clarendon Press, Oxford, 1973), 2nd ed.

[2] (a) A. S.Argon, Acta Metall. 27, 47 (1979); (b) A. Argon
and L. T. Shi, Acta Metall. 31, 499 (1983).

[3] F. Spaepen, Acta Metall. 25, 407 (1977); see also P. S.
Steif, F. Spaepen, and J. W. Hutchinson, Acta Metall. 30,
447 (1982).

[4] M. L. Falk and J. S. Langer, Phys. Rev. E 57, 7192 (1998).
[5] J. S. Langer, Phys. Rev. E 70, 041502 (2004).
[6] See P. E. Donovan, Acta Metall. 37, 445 (1989); J. J.

Lewandowski and P. Lowhaphandu, Philos. Mag. A 82,
3427 (2002).

[7] J. Lu and G. Ravichandran, J. Mater. Res. 18, 2039 (2003).
[8] F. H. Stillinger and T. A. Weber, J. Chem. Phys. 88, 7818

(1988); Science 267, 1935 (1995).
19550
[9] P. G. Debenedetti and F. H. Stillinger, Nature (London)
410, 259 (2001).

[10] J. P. K. Doye and D. J. Wales, J. Chem. Phys. 116, 3777
(2002).

[11] D. J. Wales, Science 293, 2067 (2001).
[12] D. L. Malandro and D. J. Lacks, J. Chem. Phys. 110, 4593

(1999); also 107, 5804 (1997).
[13] J. Lu, G. Ravichandran, and W. L. Johnson, Acta Mater.

51, 3429 (2003).
[14] H. Bruck, T. Christman, A. J. Rosakis, and W. L. Johnson,

Scr. Metall. Mater. 30, 429 (1994); also F. Szuecs, C. P.
Kim, and W. L. Johnson, Acta Mater. 49, 1507 (2001).

[15] Y. Zhang, D. Q. Zhao, R. J. Wang, and W. H. Wang, Acta
Mater. 51, 1971 (2003); also W. H. Wang, C. Dong, and
C. H. Shek, Mater. Sci. Eng., R 44, 45 (2004).

[16] J. Kang, M. L. Lind, H.C. Yim, and W. L. Johnson (un-
published).

[17] U. Harms, O. Jin, and R. B. Schwarz, J. Non-Cryst. Solids
317, 200 (2003).

[18] N. Nishiyama, A. Inoue, and J. Z. Jiang, Appl. Phys. Lett.
78, 1985 (2001).

[19] D. H. Xu, G. Duan, and W. L. Johnson, Acta Mater. 52,
3493 (2004).

[20] H. Choi-Yim, D. H. Xu, and W. L. Johnson, Appl. Phys.
Lett. 82, 1030 (2003).

[21] D. H. Xu, B. Lohwongwatana, G. Duan, and W. L.
Johnson, Acta Mater. 52, 2621 (2004).

[22] G. Duan, D. H. Xu, and W. L. Johnson, Phys. Rev. B 71,
224208 (2005).

[23] D. H. Xu, G. Duan, and W. L. Johnson, Phys. Rev. Lett.
92, 245504 (2004).

[24] B. Golding, B. G. Bagley, and F. S. L. Hsu, Phys. Rev. Lett.
29, 68 (1972).

[25] H. S. Chen, J. T. Krause, and E. Coleman, J. Non-Cryst.
Solids 18, 157 (1975).

[26] J. Schroers and W. L. Johnson, Appl. Phys. Lett. 84, 3666
(2004); also Phys. Rev. Lett. 93, 255506 (2004).

[27] B. Zhang, M. X. Pan, Q. Zhao, and W. H. Wang, Appl.
Phys. Lett. 85, 61 (2004).

[28] V. Ponnambalam, S. J. Poon, and G. J. Shiflet, J. Mater.
Res. 19, 3046 (2004); 19, 1320 (2004); (private commu-
nication).

[29] J. Schroers, B. Lohwongwatana, A. Peker, and W. L.
Johnson, Appl. Phys. Lett. 87, 061912 (2005).

[30] S. Takeuchi, T. Kakegawa, T. Hashimoto, A.-P. Tsai, and
A. Inoue, Mater. Trans., JIM 41, 1443 (2000).

[31] V. Z. Bengus, E. D. Tabachnikova, P. Duhaj, and V. Ocelik,
Mater. Sci. Eng. A 226–228, 823 (1997).

[32] J. D. Eshelby, Proc. R. Soc. A 241, 376 (1961).
[33] M. S. Shell, P. G. Debenedetti, W. LaNave, and F.

Sciortino, J. Chem. Phys. 118, 8821 (2003).
[34] T. V. Bogdan and D. J. Wales, J. Chem. Phys. 120, 11 090

(2004).
[35] C. Maloney and A. Lemaitre, Phys. Rev. Lett. 93, 195501

(2004).
[36] A. Tanguy, J. P. Wittmer, F. Leonforte, and J. L. Barrat,

Phys. Rev. B 66, 174205 (2002).
[37] U. F. Kocks, A. S. Argon, and M. F. Ashby, Prog. Mater.

Sci. 19, 1 (1975).
[38] P. Gaunt, Philos. Mag. B 48, 261 (1983); Philos. Mag. 34,

775 (1976).
1-4


