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Axisymmetric Bubble Pinch-Off at High Reynolds Numbers
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Analytical considerations and potential-flow numerical simulations of the pinch-off of bubbles at high
Reynolds numbers reveal that the bubble minimum radius, rn, decreases as � / r2
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p
, where � is the

time to break up, when the local shape of the bubble near the singularity is symmetric. However, if the gas
convective terms in the momentum equation become of the order of those of the liquid, the bubble shape is
no longer symmetric and the evolution of the neck changes to a rn / �1=3 power law. These findings are
verified experimentally.
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The mechanisms underlying the capillary driven
breakup of drops or liquid threads in a gas environment
have been precisely described and experimentally verified
during the last decade [1–4]. However, despite its obvious
relevance in many industrial applications, the generation
and breakup of bubbles has received less attention in the
literature. Therefore, the purpose of this Letter is to con-
tribute to the understanding of the final stages of bubble
pinch-off at high Reynolds numbers.

It is well known that, under inviscid conditions, the
pinch-off dynamics of droplets is governed by a local
balance between surface tension forces and inertia (here-
after, inertia will refer to the material derivative of linear
momentum, �Du=Dt). Therefore, the near field structure
of drop pinch-off is self-similar and universal, in the sense
that it does not depend on either initial or far field flow
conditions. Moreover, Refs. [2,5] reported that the inter-
face had a self-similar, highly asymmetric double-cone
shape at times close to the finite-time singularity.

On the other hand, recent experiments of bubble breakup
in a highly viscous liquid [6] have confirmed previous
experimental and numerical results [7,8], which clearly
showed that the low Reynolds number breakup of bubbles
is symmetric, and that the minimum radius approaches to
zero linearly with �. In addition, Suryo et al. [8] reported
that the local shape of the interface near the singularity is
parabolic and that the pinch-off is not self-similar.
However, the case of bubble breakup in a low viscosity
liquid (e.g., air in water), under study in the present work,
seems to be slightly more subtle than its viscous counter-
part. Indeed, Leppinen and Lister [5] found that, under the
assumption of potential flow, the self-similar solution near
pinch-off is no longer stable when �< 1=6:2, where � �
�̂g=�̂l is the inner (gas in our case) to outer (liquid in our
case) density ratio. Moreover, in the study by Leppinen and
Lister, the radius of the neck, rn, behaves as �2=3 for �! 0.
Nevertheless, recent accurate experimental measurements
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reported in [6] show that rn behaves as �1=2 for �! 0, in
agreement with previous analytical predictions [9]. The
reason for the different exponent in the power law given
in [5] and that of [6,9] lies in the fact that, whereas in the
former study the pinch-off is promoted by surface tension,
in the latter it is solely driven by the liquid inertia.
Consequently, in this Letter we try to solve the apparent
contradictions found by the above mentioned studies pre-
senting both experimental evidences and potential-flow nu-
merical simulations similar to those reported in [10,11],
respectively, and we propose a slight correction to the
above mentioned rn / �1=2 law.

Previous numerical results [11] show that a bubble
breaks up symmetrically when it is placed at the stagnation
point of a straining flow given by the following dimension-
less velocity potential � at infinity

� � �1=8r2 � 1=4z2; (1)

where r and z are the dimensionless radial and axial
cylindrical coordinates, respectively. Here, distances, ve-
locities, and densities have been made dimensionless using
R̂ (initial bubble radius), Ûl (characteristic outer flow
velocity), and �̂l, respectively, and dimensional variables
are indicated by a hat accent. The numerical method used
to solve the coupled system of the Laplace and Bernoulli
equations that govern the gas flow inside the bubble and the
outer liquid flow can be briefly described as follows.
Provided the values of the inner and the outer potentials
along the free surface at a given time, the velocities normal
to the interface are computed through a boundary integral
method that solves the discretized version of both the
liquid and the gas Green integral equations. The values
of the potentials are explicitly updated in time making use
of a modified version of Bernoulli’s equation that takes into
account both the inner and the outer fluid densities,
whereas the new positions of the nodal points are obtained
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by moving them normal to the interface. A more detailed
description of the numerical method can be found in [11].
With the aim of establishing the appropriate dependence of
rn on �, we carried out numerical simulations of the
evolution of the interface of a bubble initially located
within the straining flow given by Eq. (1) either at r � 0,
z � z0 � 0 (symmetric case) or at r � 0, z � z0 > 0
(asymmetric cases). In our simulations we considered
two different values of the inner to outer density ratio,
namely, � � 1:2� 10�3 and � � 1:2� 10�4.

Figure 1 shows that, in the symmetric case, the local
bubble shape near the singularity is a parabola. It can be
inferred from Fig. 1(a) that the radial length scale de-
creases more rapidly than the axial one, and consequently,
the region near the singularity can be considered slender.
Thus, to determine the proper dependence of rn on �, the
analysis of the free-surface, potential-flow problem sim-
plifies to solve the following ordinary differential equation
when rn � 1:

lnrn�r
0
nrn�

0 �
1

2
�r0n�

2 � 0: (2)

Integration of Eq. (2) gives A� � r2
n

��������������
� lnr2

n

p
� �1�

O��lnr2
n�
�1�	, indicating that the dimensionless flow rate
FIG. 1. Time evolution of the pinch-off region of a bubble,
� � 1:2� 10�3, at We � �̂lÛ

2
l R̂=�̂ � 12. In both cases, the

number of discrete points along the interface (513) were rear-
ranged at every time step in order for them to be equispaced.
(a) Symmetric breakup (z0 � 0) and (b) asymmetric case (z0 �
0:25). Note that, while in (a) the radial scale is stretched more
rapidly than the axial one, (b) suggests that a self-similar
solution could be reached near the pinch-off time if the
Kelvin-Helmholtz (shear) instabilities were prevented.
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per unit length, q � r0nrn, is such that q! 0 as �! 0.
Notice that our analytical result provides a dependence of
rn on � with a slope, in a log-log scale, larger than 1=2, but
which monotonically decreases towards 1=2 for lnrn !
�1. Figure 2 shows how the numerical evolution matches

the asymptotic behavior � / r2
n

��������������
� lnr2

n

p
for � < 0:01,

which slightly differs from the rn / �1=2 power law re-
ported in [6,9]. It needs to be pointed out that the deviation
from the 1=2 power law has been previously experimen-
tally measured at the Physics of Fluids group at Twente
University. Finally, it should be pointed out that, since
�̂lq̂=�̂l ! 0 for �! 0, the liquid viscosity must be re-
tained to describe the latest instants prior to pinch-off.

The local behavior in the asymmetric cases, displayed in
Fig. 1(b), differs from its symmetric counterparts in that
the interface tends to form a double cone with different
semiangles. Furthermore, Fig. 2 shows that this type of
breakup leads to rn / �1=3 at the latest instants of pinch-
off.

The existence of the 1=3 power law can be physically
explained as follows. Whereas the symmetry imposes a
zero gas velocity inside the neck (vg � 0), in the asym-
metric breakup vg increases as �! 0, as shown in Fig. 3.
Thus, as the gas flows through the neck at a velocity vg,
there is a suction originated by the high-speed gas stream
(Bernoulli’s effect), which further accelerates the outer
liquid towards the axis, explaining the faster asymmetric
collapse.

In the following, we will show that the 1=3 power law
appears because the final stages of pinch-off are not driven
by either surface tension or liquid inertia solely, but by both
liquid and gas inertia. First, note that dimensional argu-
FIG. 2. Time evolution of the radius of the neck, rn���, for
different values of z0 and � (otherwise stated, � � 1:2� 10�3

at We � �̂lÛ
2
l R̂=�̂ � 12). Notice that the transition from the

approximately 1=2 to the 1=3 power law is delayed as � and/or
Qg decrease. The results given for z0 � 0:25, � � 1:2� 10�4

(Qg ’ 0:59, q ’ 0:197, rtran ’ 3:3� 10�2) and those given for
z0 � 0:1, � � 1:2� 10�3 (Qg ’ 0:26, q ’ 0:21, rtran ’ 4:3�
10�2) are almost identical since the values of rtran are nearly the
same in both cases. The dashed line represents � �
2:2� r2
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ments require a typical length to determine the character-
istic gas velocity in our potential-flow problem, which
cannot be the capillary one since surface tension effects
are negligible in a collapse following a 1=3 power law
[Wen � �̂l�dr̂n=d�̂�

2r̂n=�̂ / ��1, �̂ being the liquid-gas
surface tension]. The solution to this apparent paradox is
given by a quick inspection of Fig. 3, where it is shown
that, in our incompressible, inviscid simulations, and
within admissible numerical errors, vgr2

n � Qg ’ const,
where Qg stands for the dimensionless gas flow rate. Thus,
the balance between the liquid inertia, �̂lDûl=Dt, and the
pressure drop in the gas stream requires that �̂lr̂n=�̂

2 


�̂gQ̂
2
g=r̂5

n, indicating that rn and vg can be appropriately

defined as rn 
�1=6Q1=3
g �1=3 and vg 
��1=3Q1=3

g ��2=3,
respectively. Note that, in the above discussion of the
asymmetric case (Qg � 0), we have considered the gas
flow to be quasisteady since the gas residence time, t̂r 

r̂3
n=Q̂g, is much smaller than the characteristic time of the

problem, t̂0, which can be either t̂0 
 r̂2
n=q̂ or t̂0


r̂3
n=Q̂g��1=2 and thus tr=t0
rn�q=Qg��1 or tr=t0 


�1=2 � 1. Also notice that the transition to the 1=3 power
law will take place at a characteristic transition radius rtran

such that the liquid and the gas inertia are both of the same
order of magnitude, �̂l�q̂=r̂tran�

2 
 �̂g�Q̂g=r̂
2
tran�

2 ! rtran 


�1=2�Qg=q���	. Clearly, the smaller Qg=q��� is for �

O�1� (or, equivalently, the smaller the initial asymmetry),
the smaller the transition radius is and the more difficult it
will be to determine, either numerically or experimentally,
the existence of the 1=3 power law. This conclusion is
supported by Fig. 2, where it is shown that, under the
potential-flow approximation, this transition exists when-
ever there is an initial asymmetry (z0 � 0:10 and z0 �
0:25). Consistent with the above discussion, in the sym-
metric case no transition is observed within the spatial
resolution of our numerical method. Furthermore, the
power law transition is delayed as � or Qg decrease (see
Figs. 2 and 3). Figure 2 also shows that, in the case of z0 �
0:25, the transition radius is smaller for � � 1:2� 10�4
FIG. 3. Time evolution of Qg (dashed lines) and vg (solid
lines) for z0 � 0:25; 0:1, � � 1:2� 10�3, and We � 12. It
can be observed that, whereas vg increases almost two decades,
Qg remains nearly constant during the breakup process.
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than that obtained for � � 1:2� 10�3. It should also be
emphasized that neither Qg nor q are fixed locally, but
through the entire flow domain.

So far we have assumed that the characteristic axial
length scale near the singularity is the same as the char-
acteristic radial length scale, i.e., rn. However, as pointed
out in [5], the strong shear near the minimum radius fa-
vors the development of a Kelvin-Helmholtz instability,
for which all the lengths greater than �m, with �m

�Q2

gWe���1r4
n� rn being the characteristic dimensionless

length scale such that surface tension and gas inertia are
both of the same order of magnitude, will be unstable.
Here, We � �̂lÛ

2
l R̂=�̂ and, consequently, if the latest in-

stants previous to break up could be accurately simulated,
dendrites of a typical length scale �m � rn, analogous to
the ones identified in [5], would develop.

The applicability of the above results to real flows
depends on the validity of the potential-flow approximation
employed here. Although the thickness of the gas viscous
boundary layer �g
rnRe

�1=2
g / r3=2

n , where Reg� �̂gQ̂g=
��̂gr̂n�, is very small compared with the radius of the neck,
�g � rn, flow separation may take place downstream from
the axial location of rn. Indeed, in a first approach, the gas
flow downstream of the neck is quasisteady and similar to
that of a divergent diffuser with some blowing at the walls,
whose opening semiangle is larger than the separation one.
Under these conditions the flow may separate, avoiding the
gas stagnation pressure to fully recover inside the growing
bubble. Furthermore, the flow separation will decrease the
above mentioned suction effect and, consequently, Q̂g will
also decrease, producing a subsequent accumulation of gas
upstream of the neck. To conclude, the suction mechanism,
which accelerates the outer liquid radially toward the axis,
will be less effective in real flows than it is predicted by our
simulations. In addition, viscous effects in the liquid are
expected to be negligible since Rel / ��1=3.

Up to now we have presented our numerical results to
describe the time evolution of the neck during the bubble
breakup process. However, in addition to the numerical
simulations we have also performed a meticulous series of
experiments of bubble formation in a coflowing liquid
stream using the experimental facility described in [10].
To study the final stages of the bubble breakup, we used a
high-speed video camera to record sequences of the
breakup of bubbles at a rate which was varied between 3�
104 frames=s (resolution of 256� 128 pixels) and 5�
104 frames=s (resolution of 256� 64 pixels) depending
on the experimental conditions. An example of two differ-
ent sequences are shown in Fig. 4. Before we proceed any
further, we would like to mention that the experiments
reported here were previously selected to make sure that
the breakup was purely axisymmetric. Figure 5 shows the
neck radius evolution as it approaches the singularity
(pinch-off point). This figure reports an experimental evi-
dence of the rn 
 �1=3 power law in spite of flow separa-
tion. As already discussed, the clear departure from the 1=2
1-3



FIG. 4. Close-up views showing two different sequences of the
bubble pinch-off corresponding to the experimental conditions
of Fig. 5. The air and water flow rates are Qa � 610 ml=min ,
Qw � 4 l=min in photographs (a)–(d), and Qa � 850 ml=min ,
Qw � 6 l=min in (e)–(h). The time interval between the shown
frames is �t � 100 �s in (a)–(d), and �t � 100=3 �s in (e)–
(h). The spatial resolution is, in all cases, 18:6 �m=pixel, and
the movies were recorded with a shutter time of 1=30 000 s�1.
Gas and liquid Reynolds numbers based on the needle diameter
are, for both experimental conditions, of the order of 
O�103�
and 
O�104�, respectively.
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power law is promoted by the favorable (negative) pressure
gradient induced by the gas flow towards the neck. The
breakup time was determined from the recordings by least-
squares fitting of the last 6 to 10 data points to the 1=3

power law, since fitting to the � / r2
n

��������������
� lnr2

n

p
or to the 2=3

power law resulted in inconsistent results for the pinch-off
time when compared to the high-speed movies. It was
checked that the results were not sensitive to the number
of selected data points and, in all cases, the correlation
/ /

FIG. 5. Experimental results for the evolution of r̂n with �̂ in a
coflowing air-water jet. The gas is injected through a needle
(inner and outer radii 0.419 and 0.635 mm, respectively) placed
coaxially within a liquid jet discharging from a 4 mm radius
circular nozzle. Qa and Qw denote the air and water flow rates,
respectively. A detailed description of the experimental facility
is given in [10].
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coefficient was very close to unity. More importantly, the
photographs shown in Fig. 4 provide evidence of the strong
asymmetry generated by the favorable pressure gradient
induced by the gas flow in the neck region [see frames (c),
(d), (g), and (h) in Fig. 4].

In view of the previous results, it can be concluded that,
in spite of flow separation, the favorable pressure gradient
generated accelerates the liquid both radially and axially,
producing a strong asymmetry near the neck region. Since
this mechanism is only appreciable at scales rtran 


�1=2�Qg=q�, detailed experiments need to be carried out
in order to verify whether this behavior, experimentally
verified for large values of Qg=q, is also present if, for �

O�1�, Qg=q��� & O�1�.
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