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Complete Band Gaps in One-Dimensional Left-Handed Periodic Structures
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Artificially fabricated structures with periodically modulated parameters such as photonic crystals offer
novel ways of controlling the flow of light due to the existence of a range of forbidden frequencies
associated with a photonic band gap. It is believed that modulation of the refractive index in all three
spatial dimensions is required to open a complete band gap and prevent the propagation of electromag-
netic waves in all directions. Here we reveal that, in sharp contrast to what was known before and contrary
to the accepted physical intuition, a one-dimensional periodic structure containing the layers of
transparent left-handed (or negative-index) metamaterial can trap light in three-dimensional space due
to the existence of a complete band gap.
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FIG. 1 (color online). Schematic of the left-handed periodic
structure with (a) the ray diagram for the end-fire wave propa-
gation and (b) suppression of radiation of a local source placed
inside.
Photonic crystals are artificial materials with a periodic
modulation in the dielectric constant which can create a
range of forbidden frequencies called a photonic band gap
[1]. Photons with frequencies within the band gap cannot
propagate through the medium. This unique feature can
alter dramatically the properties of light, enabling control
of spontaneous emission in quantum devices and light
manipulation for photonic information technology [2].
Photonic band-gap structures can also be found in nature,
and they explain the color diversity of some of the living
creatures [3].

Complete two-dimensional (2D) and three-dimensional
(3D) band gaps can be realized in photonic crystals, where
the refractive index is periodically modulated in two or
three dimensions, respectively [1]. Such modulation is
necessary to satisfy the Bragg condition simultaneously
for all propagation directions, requiring that phase accu-
mulation per period is close to a multiple of �, so that the
waves reflected at different interfaces between the regions
with low and high refractive indexes interfere construc-
tively and wave propagation is prohibited for any incidence
angle. Manufacturing of 3D photonic crystals still remains
a technological challenge due to the requirements of large
index contrast and high fabrication precision.

The simplest periodic structure, both in geometry and
manufacturing, is a one-dimensional stack of two types of
layers which differ in the dielectric constant [4]. However,
such structures may only possess partial band gaps for
certain ranges of propagation directions. Here we study
the scattering properties of one-dimensional periodic struc-
tures containing layers made of the so-called left-handed
metamaterials (LHMs)—artificially created composites
which are characterized by simultaneously negative dielec-
tric permittivity and magnetic permeability. Such materials
are transparent and can bend light in the opposite direction
to normal reversing the way in which refraction usually
works [5]. We demonstrate that specially designed one-
dimensional structures with negative refraction may ex-
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hibit a complete three-dimensional band gap. First, we
show that a layered structure made of two alternating
layers of left-handed materials and conventional dielectrics
can exhibit a complete two-dimensional band gap; i.e., it
does not support any propagating TE or TM waves and is
therefore opaque for any angle of propagation in the plane.
As a direct consequence of such band gap, the radiation of
waves with given polarization by any source placed any-
where inside this structure is prohibited, and the two-
dimensional density of states (DOS) [6] is zero. This result
is in sharp contrast to directional reflection [7–9] in con-
ventional layered dielectric structures, which reflect only
electromagnetic waves launched from air or a low-index
medium. In the periodic structures with usual dielectrics a
source dipole can emit radiation of both polarizations,
indicating that the complete gap is absent and propagating
TE and TM modes are always present. The outcoupling of
radiation from a periodic structure can vanish only at
certain interfaces [see Ref. [10] and references therein],
whereas the radiation along the layers, as well as DOS, is
never zero. We reveal the physical effects which lead to
such fundamental differences between periodic structures
with conventional and left-handed layers. In the final part
of the Letter, we suggest a design of a one-dimensional
periodic structure consisting of three alternating layers
made of conventional dielectric and left-handed materials
which possesses a complete three-dimensional band gap.
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We consider a one-dimensional periodic structure cre-
ated by layers (with the thicknesses d1 and d2) of two
different materials with dielectric permittivities �1;2 and
magnetic permeabilities �1;2, respectively, as shown in
Fig. 1. First, we study the propagation of the TE-polarized
electromagnetic waves which have the component of the
electric field parallel to the layers (E � Ey); all results can
be easily generalized for the case of the TM-polarized
waves. We consider the wave propagation in the �x; z�
plane characterized by the wave vector k � �kx; 0; kz�.
The TE-polarized waves are described by the linear
Helmholtz-type equation for the electric field component,
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where � � @2=@x2 � @2=@z2 is the two-dimensional
Laplacian and n2�x� � ��x���x� is the square of refractive
index. In a one-dimensional periodic structure the propa-
gating waves have the form of Bloch modes, for which the
electric field amplitudes satisfy the periodicity condition,
E�x��;z��E�x;0�exp�iKb� ikzz�, where � � d1 � d2

is the period of the structure. Here Kb is the dimensionless
Bloch wave number which defines the wave transmission
across the layers, and its dependence on the wave vector
component along the layers (kz) can be found explicitly for
two-layered periodic structures [see, e.g., Refs. [4,11] ],
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Here Tr �M� is the trace of the transfer matrix M character-
izing the wave scattering in a periodic structure [4], kjx �
kj�1� k2

z=k2
j �

1=2 are the x components of the wave vector
in the first (j � 1) and second (j � 2) media, and kj �
!nj=c are wave numbers in each media with refractive
indexes nj. For completeness, we mention that the disper-
sion relation of the TM-polarized waves is obtained by
replacing �, � in Eq. (2).

Solutions of the dispersion relation (2) with both real kz
and Kb correspond to Bloch waves which can propagate
through the periodic structure, whereas complex kz or Kb
indicate the presence of band gaps in the spectrum where
the wave propagation is prohibited. A complete band gap
occurs if for all real kz, the Kb remains complex. It was
recently shown [11,12] that novel partial band gaps can
appear in structures made of alternating layers of LHM and
normal dielectrics when the condition of zero average
refractive index is satisfied for particular propagation an-
gles (kz), k1xd1 � k2xd2 � 0, which is possible because kx
is positive in conventional dielectrics and it is negative in
left-handed materials. However, we find that this require-
ment is neither sufficient nor necessary to obtain complete
band gaps.
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In order to emphasize the importance of our findings
presented below, first we recall the basic physics which
explains why one-dimensional periodic structures contain-
ing materials of the same type (i.e., normal dielectrics) do
not possess a complete three-dimensional band gap.
Analyzing the effects associated with the wave scattering
in Bragg gratings [13], we come to the conclusion that the
only phenomenon which always allows for the wave propa-
gation in the 1D dielectric periodic structures, and which
cannot be suppressed by a choice of the structural parame-
ters, is the waveguiding by optically dense layers. Indeed,
it is well known that a dielectric waveguide with the core
made of an optically dense medium always supports a
fundamental mode. However, as was shown recently
[14], the fundamental mode can be absent if the core is
made of LH metamaterial. And it is this property of a LH
waveguide that allows us to introduce a novel type of one-
dimensional periodic structures with a complete band gap.

Why does the usual dielectric waveguide always support
the fundamental mode, and why a metamaterial waveguide
does not? The condition for the guided waves to exist,
defined by the dispersion relation for the modes in a slab
waveguide, has a simple physical meaning: the round-trip
accumulation of phase due to wave propagation across the
layer, 2�prop, including the phase retardation upon the total
internal reflection, 2�refl, should be equal to a multiple of
2�. The phase change due to the total internal reflection is
negative for both types of waveguides, and depending on
the angle of incidence it varies from 0 to��. A difference
between the conventional and LHM waveguides appears
due to the phase accumulated by the wave propagating
across the layer. In usual dielectrics, the wave is forward;
i.e., the phase accumulated along the direction of energy
flow is positive. As a result, there always exists an angle of
wave propagation, such that the total phase change van-
ishes, and at least one mode always exists in a dielectric
waveguide. In a LHM waveguide, the wave is backward,
and the phase change �prop is negative. Then, one can
choose the parameters in such a way that for all angles of
wave propagation (greater than the angle of the total inter-
nal reflection), the total phase change is �4�<� �
2��refl ��prop�<�2�, and no guided modes exist.

Based on the results presented above we can construct
the one-dimensional periodic structure which possesses a
complete band gap for one polarization. Indeed, we need to
choose the layer thickness such that the guided modes are
absent in the waveguides formed by the layers in the
structure, and by varying the material parameters we
should avoid the transmission resonances [13]. Our analy-
sis shows that it is indeed possible to find such structures
and, for example, the complete gap appears for the follow-
ing set of parameters: �1 � �1 � 1, �2 � �6, �2 �

�1:38, d�0�1 � 1:5�=2�, d�0�2 � 1:4�=2�, where � �
2�c=! is the vacuum wavelength. Then we study the
dependence of the band-gap spectrum on the structure
period for a fixed ratio d1=d2 � d�0�1 =d

�0�
2 , and Fig. 2(top)
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FIG. 2 (color online). (top) Shaded regions mark ranges of
longitudinal wave numbers vs the structure period [normalized
to �=�2��] corresponding to TE (left) and TM (right) polarized
electromagnetic waves that can propagate through the structure.
(bottom) Dispersion diagrams of the Bloch waves for particular
polarizations and periods, as indicated by arrows.
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FIG. 3 (color online). Regions of parameters for which the
complete TE (black) and complete TM (red) band gaps exist.
The thickness d�0�1 and d�0�2 of the LH and RH layers are defined
in the text.

FIG. 4 (color online). Dependence of the two-dimensional
density of states on the magnetic permeability of LHM. The
top insets show the structure of the Green’s function inside the
band gap (middle), and outside the band gap (left and right),
where the source position is x0 � z0 � 0.
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shows the bands (colored) where the wave propagation is
possible. For the TE modes [see Fig. 2 (left, top)], there
exists a range of periods for which the propagation is
completely prohibited for all possible kz, since the corre-
sponding Kb are complex. This means, in particular, that if
we consider an end-fire generation problem and launch the
waves along the layers towards the structure, they will be
completely reflected, as schematically shown in Fig. 1(a).
Such a regime is impossible for any type of the conven-
tional dielectric gratings.

However, there is no complete band gap for the TM-
polarized waves propagating in the same structure. In the
optimal case with d1;2 � d�0�1;2, we have only one angle of
propagation possible (i.e., the only value of kz with real
Kb). This is the Brewster angle for which there is no
reflection of TM waves at the interfaces. From the electro-
magnetic duality principle we find that taking the structure
with LHM metamaterial characterized by �new

2 � �2 and
�new

2 � �2, we can obtain a complete band gap for the TM-
polarized waves. Most remarkably, the complete band gap
for each polarization exists for rather broad ranges of the
structure parameters; see Fig. 3. The regions for the com-
plete TE and TM band gaps are symmetric with respect to
the line �2 � �2, and this is a consequence of the electro-
magnetic duality.

One-dimensional structures with a complete band gap
for one of the polarizations can be used to form an elec-
tromagnetic cavity. To study the main features of the wave
localization due to the presence of a complete band gap, we
analyze the field of a line current J running along the y axis
inside the structure at the position r0 � �x0; z0� in the
r � �x; z� plane. It follows from the Maxwell’s equations
that the electric field can be expressed as E�x; z� �
i!J��x0; z0�G�x; z�=c2, where G is the Green’s function
found as a solution of the following equation,
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The total emitted power per unit length of the line current J
is

W � �
!J2��x0; z0�

2c2 Im �G�x0; z0��; (4)

and this quantity is proportional to the local density of
states (LDOS) [15]. The density of states (DOS) of the
structure, which is an integral of LDOS over the Brillouin
zone, characterizes the radiation efficiency of multiple
sources located at different positions. The DOS becomes
zero only if radiation in any direction in the plane is
prohibited, indicated by the presence of a complete 2D
band gap. We plot the dependence of the DOS on the
magnetic permeability of negative-index material �2 for
fixed �2 � �6 and d1;2 � d�0�1;2 in Fig. 4, which clearly
demonstrates that a two-dimensional band gap exists for
the TE-polarized waves within a certain range of media
parameters. Within the band-gap region the radiation is
3-3



FIG. 5 (color online). The Green’s function of a one-
dimensional three-layer periodic structure possessing an abso-
lute band gap.
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suppressed and the Green’s function is exponentially lo-
calized for any source position [see Fig. 4 (top, middle)].
Outside the band gap, different propagating Bloch modes
are excited, and the Green’s function is not localized [see
Fig. 4 (top, left and right)].

After the comprehensive study of the two-layer periodic
systems and the properties of the complete band gaps
supported by one-dimensional hybrid structures, we are
able to suggest the case when the complete band gap
may appear for both polarizations, thus allowing the ex-
istence of the absolute band gap. Indeed, to do this we
should consider the more sophisticated case of a three-
layer periodic structure in order to suppress the conditions
for the existence of the Brewster angle which prevents us
from creating a complete band gap in two-layer structures.
The Brewster-angle transmission resonance can be easily
eliminated by introducing a third layer in the structure, thus
allowing the existence of a complete three-dimensional
band gap for all waves propagating inside a specially
designed one-dimensional structure. To demonstrate this
quite unique property, we choose the structure with the
parameters �1 � �1 � 1, �2 � �3,�2 � �3, and d2 � d3.
The choice of this symmetry simplifies the analysis of the
structure making it mathematically more elegant. Indeed,
in this case the trace of the transfer matrix is the same for
both polarizations, and it can be represented in the form

Tr�M��2cos�k1xd1�cos2�k2xd2��

�
�2

�2
�
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k2x
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k2x
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�

	sin�k1xd1�sin�2k2xd2�:

Since the traces of the transfer matrices coincide for both
TE and TM polarizations, the band gaps will appear in the
structure spectrum for both the polarizations simulta-
neously. Existence of the transmission band gaps for both
TE and TM-polarized waves in the same periodic structure
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indicate the existence of an absolute band gap. As an
example, we show that the structure with the parameters
�2 � �3 � �6, �3 � �2 � �1:38, d1 � 1:5�=�2��,
d2 � d3 � 0:7�=�2�� possesses an absolute three-
dimensional band gap, and the Green’s function corre-
sponding to this three-layer structure is presented in Fig. 5.

In conclusion, we have revealed a novel and highly
nontrivial property of left-handed metamaterials with
negative refraction: a one-dimensional periodic structure
containing layers made of a left-handed metamaterial can
trap light in three dimensions due to the existence of a
complete photonic band gap. This finding is in a sharp
contrast with the fundamental concepts of the conventional
physics of photonic crystals where complicated structures
with two- and three-dimensional periodicity are required.
We believe that our results suggest new directions for the
future applications of metamaterials for microwaves,
Terahertz frequencies, and visible light as fabrication tech-
nologies become available.
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