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Superfluidity of Mesoscopic Bose Gases under Varying Confinements
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The superfluid fraction Ns=N of 27 bosons under varying confinement is investigated at finite
temperature using well-known properties of the harmonic oscillator and the microscopic path integral
Monte Carlo method. We find that Ns=N (i) is essentially independent of the interaction strength for all
temperatures considered, (ii) changes profoundly as the effective dimensionality is varied from three to
one dimensional, (iii) is approximately equal to the condensate fraction N0=N for spherical Bose gases,
and (iv) deviates dramatically from N0=N for highly elongated Bose gases.
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Macroscopic objects such as liquid 4He show many
peculiar properties that can be attributed to superfluidity
[1]. Among these are the absence of viscosity, the occur-
ence of persistent currents, the existence of vortices, and
the reduction of the moment of inertia. Connections be-
tween manifestations of superfluidity and Bose Einstein
condensation have been studied extensively in the context
of liquid 4He since the discovery of its superfluidity in
1938. While much progress has been made in our under-
standing of such strongly interacting systems, many ques-
tions remain unanswered.

Although strictly speaking the transition temperature of
a Bose gas is defined only in the thermodynamic limit, its
definition can be extended to finite systems (see, e.g.,
Refs. [2,3]). Phase transitions are, however, ‘‘smeared
out’’ for finite systems. Thanks to the realization of gas-
eous Bose Einstein condensates (BECs), the study of su-
perfluid effects of mesoscopic systems has become pos-
sible. Indeed, the creation of vortices [4,5] and vortex
lattices [6] has been demonstrated in inhomogeneous
Bose gases and, most recently, also in degenerate Fermi
gases in the BEC-BCS crossover regime [7]. Following the
work on 4He enclosed in a cylinder [8], superfluidity of
inhomogeneous systems can be described through their
rotational properties. The superfluid fraction is defined by
the departure of the quantum mechanical moment of inertia
�n̂ with respect to n̂ from its classical, or rigid, value �rig

n̂ .
Here the moment of inertia �n̂, �n̂ � �@h ~L � n̂i!=@!�!�0,
is defined by the linear response of the system to a rota-
tional field Hext � � ~! � ~L, where ~! � !n̂; ! denotes the
angular frequency and ~L the total angular momentum. The
thermal expectation value h�i! is evaluated for the system
perturbed by Hext. The normal fraction is the part of the
system that responds classically, i.e., �n̂=�rig

n̂ , and the
superfluid fraction �Ns=N�n̂ is 1��n̂=�rig

n̂ .
This Letter determines the temperature dependence of

�n̂ and �rig
n̂ , and, hence, of the superfluid fraction, for

small atomic gases with N � 27 bosons for varying
confinement and interaction strength nonperturbatively
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using the essentially exact microscopic path integral
Monte Carlo (PIMC) method [9]. For the ideal gas, we
additionally determine thermal expectation values using
well-known properties of the harmonic oscillator [10]. In
contrast to 4He clusters [11] or deformed nuclei [12],
whose interaction strength and internal temperature are
largely ‘‘set by nature,’’ atomic gases provide us with
unprecedented control. The temperature can be controlled
by changing the cooling scheme [13], the interaction
strength can be tuned by applying an external magnetic
field in the vicinity of a Feshbach resonance [14], and the
dimensionality can be reduced by varying the external
confinement [15]. Here we focus on the crossover from
three-dimensional (3D) to one-dimensional (1D) behavior.
We show that reduced dimensionality leads to an increase
of the superfluid response. The superfluid fraction Ns=N
for 3D gases roughly coincides with the condensate frac-
tion N0=N. In the quasi-1D regime, however, Ns=N is
much larger than N0=N. Our calculations show that the
superfluid response depends, if at all, weakly on the
strength of the atom-atom interactions.

Consider N bosons with mass m under external har-
monic confinement,
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Here �j and zj denote the transverse and longitudinal
coordinate of the jth atom, respectively, and !� and !z

the transverse and longitudinal angular frequency of the
trapping potential, respectively. The atom-atom potential V
depends on the interparticle distance rjk between atom j
and atom k. For the noninteracting gas, i.e., V�r� � 0, we
calculate thermal expectation values in the grand canonical
ensemble using well-known properties of the harmonic
oscillator [10]. To simulate effectively repulsive Bose
gases, we use a hard sphere potential V�r� with 3D atom-
atom scattering length a; in particular, a � 0:004 33 and
0:0433az, where az �

������������������
@=�m!z�

p
. In this case, we use the

numerically more involved PIMC technique [9], which
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determines thermal expectation values in the canonical
ensemble. For the purpose of the present study, differences
between expectation values calculated in the grand canoni-
cal and in the canonical ensembles (see also Ref. [16]) are
negligible.

To investigate the crossover from 3D to 1D for N
bosons, we vary the angular frequency !� such that L �
1, 10, and 100, where L � !�=!z. The approximate 3D
transition temperature Tc, obtained for vanishing atom-
atom interactions, then depends on !�, !z, and N [the
Tc used throughout this paper includes finite-size correc-
tions; see, e.g., Eq. (19) in Ref. [17]]. A dotted line in Fig. 1
shows Tc as a function of the aspect ratio L for N � 27.
Below, we report calculations for L � 1, 10, and 100 over
a wide temperature range, i.e., 0:1 & T=Tc & 1:4 (see
vertical arrows in Fig. 1).

Highly elongated gases at T � 0 can, to a very good
approximation, be described by an effective 1D
Hamiltonian for any 3D scattering length a if N=L� 1
[18]. For N � 27 and L � 100, we find N=L � 0:27. At
finite temperature, the behavior of highly elongated Bose
gases depends on two energy scales, the oscillator energies
@!� and @!z of the tight and weak confinement directions,
respectively. For N � 27 and L � 100, three temperature
regimes exist [2]: (i) T is larger than the 3D transition
temperature Tc (excited transverse modes are occupied);
(ii) T is lower than Tc but larger than the 1D transition
temperature T1D

c [3] (transverse excitations are largely
frozen out); and (iii) T is smaller than T1D

c (excited longi-
tudinal modes are largely frozen out). ForN � 27 and L �
100, the approximate 3D transition temperature is kBTc �
36:0@!z, while the approximate 1D transition temperature
is kBT1D

c � 6:77@!z, corresponding to 0:19Tc.
FIG. 1. Approximate 3D transition temperature kBTc (see text)
in units of @!z (!z � 2��z) as a function of L for N � 27.
Vertical arrows indicate the interval 0:1 	 T=Tc 	 1:4 for L �
1, 10, and 100. The inset shows the specific heat C divided by
NkB calculated in the grand canonical ensemble as a function of
T=Tc for N � 27 and varying L.
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To understand the significance of the 3D transition
temperature Tc, we calculate the specific heat C, C �
�@U=@T�N , where U denotes the internal energy [2], for
the ideal gas in the grand canonical ensemble. The inset in
Fig. 1 shows the specific heat C for N � 27 for three
different aspect ratios, i.e., L � 1 (solid line), 10 (dotted
line), and 100 (dashed line). Since the specific heat shows a
peak, although broadened due to the finite size of the Bose
gas, at T=Tc � 1 for L � 1 and 10 and at T=Tc � 1:4 for
L � 100, it is justified to speak of a 3D transition tempera-
ture for Bose gases with as few as N � 27 atoms. In
contrast, the transition to macroscopic occupation of the
lowest energy state for the quasi-1D gas with L � 100, i.e.,
to ‘‘1D condensation,’’ does not imprint a clear signature
on the specific heat (see also Refs. [2,3]).

Figure 2 shows the expectation value of the absolute
value of z (in the following denoted by hjzji) in units of az,
calculated using the PIMC method, as a function of the
scaled temperature T=Tc for (a) L � 1 and (b) L � 100 for
three scattering lengths; a � 0 (diamonds), a � 0:00433az
(squares), and a � 0:0433az (triangles). At low T=Tc, our
expectation values of jzj for a � 0 (circles) approach the
zero-temperature value, i.e., hjzji � 0:564az. Since the
energy of the transverse excitations increases with increas-
FIG. 2. PIMC expectation value of the absolute value of z in
units of az as a function of T=Tc for N � 27 for (a) L � 1 and
(b) 100. Diamonds show the results for a=az � 0, squares those
for a=az � 0:004 33, and triangles those for a=az � 0:0433. For
L � 100, the inset shows the expectation value of � in units of
a� as a function of T=Tc. Statistical uncertainties are smaller
than the symbol size [23].
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ing L, the expectation value of jzj for L � 100 approaches
the zero-temperature value at a lower scaled temperature
T=Tc than that for L � 1. For repulsive interactions, i.e.,
a=az � 0:004 33 (squares) and a=az � 0:0433 (triangles),
the expectation value of jzj increases compared to that of
the noninteracting gas.

The inset in Fig. 2(b) shows the expectation value of � in

units of a�, where a� �
�������������������
@=�m!��

q
, for L � 100 as a

function of T=Tc (using the same symbols as in the main
figure). At T � 0, the expectation value of � is 0:886a� for
the noninteracting gas. Just as the expectation value of jzj,
FIG. 3. Superfluid fraction �Ns=N�ẑ for N � 27 and (a) L � 1,
(b) L � 10, and (c) L � 100: Diamonds show the PIMC results
for a=az � 0, squares those for a=az � 0:004 33, and triangles
those for a=az � 0:0433 [24]; dotted lines show �Ns=N�ẑ for
a � 0 calculated in the grand canonical ensemble. Solid lines
show �Ns=N�ẑ given by Eq. (2). Dashed-dotted lines show N0=N
and dot-dot-dot-dashed lines the fraction N1D=N. The inset of
panel (a) shows �Ns=N�x̂ for N � 27 and T=Tc � 0:2 for three
different interaction strengths (using the same symbols as in the
main figure) as a function of L.
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that of � depends strongly on the interaction strength a.
The nearly constant expectation value of � for L � 100
(for a given value of a) at low T=Tc indicates that the
excitations in the transverse direction are frozen out for
T & 0:4Tc and, hence, for T < T1D

c .
We now turn to the calculation of the superfluid fraction

�Ns=N�n̂ with respect to the axis n̂. For the noninteracting
gas, the superfluid fraction with respect to, e.g., the z axis
can be calculated from the thermal expectation values of x2

and y2 [19]. To this aim, we consider a trapping geometry
with !y � !x ��! in the limit �!! 0 [see Eq. (7) in
Ref. [19]]. Dotted lines in Fig. 3 show the resulting super-
fluid fraction �Ns=N�ẑ, calculated in the grand canonical
ensemble, for (a) L � 1, (b) L � 10, and (c) L � 100 as a
function of T=Tc for N � 27 noninteracting bosons.

Within the PIMC formulation, the superfluid fraction
�Ns=N�n̂ can be calculated from the square of the projected
area An̂ [11], where An̂ � ~A � n̂ and ~A denotes the area
enclosed by the imaginary time paths [9]. Symbols in
Fig. 3 show the superfluid fraction �Ns=N�ẑ calculated
using the PIMC method for three different aspect ratios
L; diamonds show our results for a � 0, squares those for
a � 0:004 33az, and triangles those for a � 0:0433az. For
a � 0, the PIMC results for �Ns=N�ẑ (diamonds), calcu-
lated in the canonical ensemble, agree well with those
calculated in the grand canonical ensemble (dotted lines).
The superfluid fraction �Ns=N�ẑ is essentially one at small
scaled temperatures and decreases gradually with increas-
ing T=Tc. For L � 1, �Ns=N�ẑ is about 0.05 for T=Tc � 1.
For the larger aspect ratios [see Figs. 3(b) and 3(c)], in
contrast, �Ns=N�ẑ is significantly larger at the transition
temperature (about 0.2 for L � 10 and about 0.65 for L �
100). When plotted, as done here, as a function of T=Tc,
the superfluid fraction �Ns=N�ẑ shows a very weak, if any,
dependence on the interaction strength for all aspect ratios.

The spherically symmetric system with L � 1 has no
preferred symmetry axis, implying �Ns=N�ẑ � �Ns=N�x̂.
For L> 1, however, the superfluid fraction �Ns=N�x̂ is
distinctly different from �Ns=N�ẑ. Geometric arguments
imply that �Ns=N�x̂ approaches zero when the system
reaches the quasi-1D regime. When exposed to a rotation
about x̂, the atoms move with the external trap, thus
implying �rig

x̂ � �x̂. The inset in Fig. 3(a) shows the
superfluid fraction �Ns=N�x̂ for N � 27 and T=Tc � 0:2
for three different scattering lengths (using the same sym-
bols as in the main figure) as a function of the aspect ratio
L. It is evident that �Ns=N�x̂ decreases rapidly with increas-
ing L.

To connect with earlier work, we consider an analytical
expression for the superfluid fraction �Ns=N�ẑ, which has
been derived using the semiclassical approximation for the
noninteracting gas [19]. For a trap geometry with!y � !x

and !z � !x=L, we generalize the treatment by Stringari
[19] to account for rotations about n̂ � x̂. To additionally
improve the accuracy for small N, we use the Tc that
accounts for finite-size effects (see above),
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�Ns=N�n̂ �
A
1� �T=Tc�3�

1� � TTc�
3 � B 1:80079

L � TTc
�4 kBTc
@!z

: (2)

Here A and B denote constants depending on the geometry
of the trap; A � B � 1 for n̂ � ẑ, and A � 1� 
�1� L�=
�1� L��2 and B � �L2 � 1�=�L� 1� for n̂ � x̂.

Solid lines in Fig. 3 show the resulting approximate
superfluid fractions �Ns=N�ẑ (main figure) and �Ns=N�x̂
[inset in Fig. 3(a)]. The agreement between Eq. (2) and
our numerical results for L � 1 is good. For L � 100,
however, Eq. (2) describes the superfluid fraction at best
qualitatively.

Since we expect the dependence of the condensate frac-
tion N0=N on the interaction strength to be small for the
systems considered here, dashed-dotted lines in Fig. 3
show N0=N calculated in the grand canonical ensemble
for the noninteracting gas (N0=N is defined as the occupa-
tion probability of the lowest oscillator state). For L � 1,
the condensate fraction roughly agrees with the superfluid
fraction. For L � 100, in contrast, N0=N drops to zero at
much lower temperatures than �Ns=N�ẑ. This shows that
the condensate fraction and the superfluid fraction are
distinctly different quantities for highly elongated systems.
For comparison, dot-dot-dot-dashed lines show the fraction
of atoms N1D=N in the lowest transverse mode, where
N1D �

P
kN00k and Nijk=N denotes the fraction of atoms

in the state with i quanta in the x, j quanta in the y, and k
quanta in the z directions. For the highly elongated gas
with L � 100, the fraction of atoms N1D=N is larger than
the superfluid fraction �Ns=N�ẑ but shows a similar overall
behavior.

Our calculations indicate that the superfluid fraction
Ns=N and the condensate fraction N0=N for L � 1 and
N � 27 deviate at finite temperature even for the noninter-
acting gas [see Fig. 3(a)]. These deviations are somewhat
enhanced for noninteracting gases with larger N, i.e., N �
100 and 1000 (not shown), implying that the deviations for
N � 27 and L � 1 are not due to finite-size effects; Ns=N
andN0=N are distinctly different quantities at finite T, even
for spherically symmetric noninteracting Bose gases. For
highly elongated noninteracting Bose gases with up toN �
1000 (and constant L=N), we find that the ratio between
Ns=N and N1D=N at a given scaled temperature T=Tc
remains roughly constant. We conclude that further sys-
tematic N-dependent investigations of the superfluid be-
havior of noninteracting and interacting Bose and Fermi
gases with varying effective dimensionality are called for.

In summary, this Letter determines the quantum me-
chanical moment of inertia of small Bose gases under
varying confinement over a wide temperature range. This
quantity has played a key role in the study of finite-size
bosonic helium droplets over the past 10 years or so [20].
Measurements of the quantum mechanical moment of
inertia of an impurity embedded inside such a droplet
have, e.g., shown unambigiously that bosonic helium clus-
ters with as few as about 60 atoms are superfluid [21]. This
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paper shows that the effects of superfluidity are altered as
the effective dimensionality of the trapped gas changes
from 3D to 1D. The superfluid fraction �Ns=N�ẑ is en-
hanced as the dimensionality is reduced. In the quasi-1D
regime, the superfluid response is distinctly different from
the condensate fraction N0=N and very roughly follows the
fraction N1D=N of atoms in the lowest transverse mode.
Our predictions could be verified by extending experiments
on rotating Bose gases [5] to optical lattices. Alternatively,
spectroscopic measurements on impurities embedded in
condensates [22] of different geometry might provide sig-
natures of superfluidity.
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