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Probing the Origins of Neutrino Mass with Supernova Data
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We study type II supernova signatures of neutrino mass generation via symmetry breaking at a scale in
the range from keV to MeV. The scalar responsible for symmetry breaking is thermalized in the supernova
core and restores the symmetry. The neutrinos from scalar decays have about half the average energy of
thermal neutrinos. The Bose-Einstein distribution of the scalars can be established with a megaton water
Čerenkov detector. The discovery of the bimodal neutrino flux is, however, well within the reach of the
Super-Kamiokande detector, without a detailed knowledge of the supernova parameters.
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Type II supernovae provide some of the most extreme
environments at the present cosmological epoch. In these
explosions, the stellar gravitational binding energy ESN ’
3� 1053 erg is released almost entirely in a neutrino burst.
After the initial collapse, the stellar core is characterized by
nuclear densities and a temperature TSN ’ 30 MeV. The
cooling of the core occurs over a period of seconds,
through an explosive release of ESN by neutrino emission.

Given such conditions, it is interesting to ask whether
there may be new particles at a scale below TSN that could
be relevant in the first few seconds of the supernova
explosion. In fact, supernova cooling has provided strin-
gent bounds on many models containing light particles,
like the axion [1]. However, such models do not generi-
cally yield distinct supernova signatures.

In this Letter, we study possible supernova signatures of
neutrino mass generation from low energy symmetry
breaking. The basic idea is that, in a typical supernova
with temperature TSN, a light scalar, whose vacuum expec-
tation value (VEV) generates m� � 0, may be in thermal
equilibrium during the explosion. We show that this can
typically be the case, providing robust signatures of this
physics, which may otherwise be hard to access.

Our study is based on recent low-cutoff-scale models for
neutrino mass generation proposed in Ref. [2]. In contrast
to the seesaw mechanism with scales of order 1014 GeV,
these models can be cut off at 10 TeV & � & 1000 TeV,
avoiding extrapolations far above the experimental frontier
at around 1 TeV. Both Majorana and Dirac masses can be
generated in these theories. To afford a low-cutoff scale, a
discrete gauged (anomaly-free) Z‘3 � Z

q
9 symmetry is as-

sumed to protect Baryon (B) and Lepton (L) numbers.
Small values of m� � 0 are generated when certain sym-
metries are spontaneously broken at or below 10 MeV, by a
scalar VEV [3]. We generically denote such a scalar by ’.

A consequence of this scenario is that a Bose-Einstein
gas of scalars with T ’ TSN will be present during the
cooling of the supernova. Thermal scalars produced in
the bulk are either confined within the neutrino sphere or
they decay into neutrinos, which are also confined. The ’’s
escaping at the surface quickly decay into neutrinos. The
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average energy of these neutrinos is half that of the thermal
scalars. In addition, these neutrinos inherit the Bose-
Einstein distribution of the parent scalars. These are dis-
tinct signatures of the presence of a light bosonic degree of
freedom that couples to neutrinos. Detecting a flux of
supernova neutrinos with about half the expected average
energy and a Bose-Einstein thermal origin will strongly
favor the type of models we consider. In this case, the
supernova data will provide a direct probe of the mecha-
nism responsible for neutrino mass generation.

Since the thermalized scalars are expected to have a self-
coupling � ’ 1, the corrections to their potentials are of
order �T2 � h’i2, where T ’ TSN. Thus, the symmetry
whose breaking gives m� � 0 is restored in the supernova
core. We then expect that h’i � m� � 0 in the core, during
the initial stages of the supernova explosion. A symmetry
breaking phase transition will take place after the star has
cooled to T & h’i. This will result in the emission of
nonthermal neutrinos with E� ’ h’i. Later, we will briefly
comment on the possibility of detecting such a signal.

To demonstrate these features, we adopt a neutrino mass
model with low scale symmetry breaking, presented in
Ref. [2]. In this model, Majorana neutrino masses consis-
tent with flavor oscillation data are generated. Other mod-
els with more degrees of freedom that lead to Dirac masses
from low scale symmetry breaking have also been consid-
ered [2]. To keep the discussion simple and emphasize the
main features, we will not consider these latter models
here. However, a similar analysis can be performed for
the Dirac mass models of Ref. [2].

Without specific assumptions about the cutoff scale �, a
gauged Z‘3 � Z

q
9 protects B and L numbers at safe levels

[2]. To obtain Majorana masses for neutrinos, a scalar ’
with Z‘3 charge �1 is introduced. Suppressing the genera-
tion indices, the dimension-6 operator

O’ �
’LHLH

�2 (1)

then yields the Yukawa coupling y’�L�L, with y �
�v=��2 and v � hHi � 0; L and H are the standard model
lepton doublet and the Higgs, respectively.
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The coupling y is constrained by 0���� ’ [7]: y <
3� 10�5, implying that � * 30 TeV. For m� ’ 0:1 eV,
we then need h’i * 3 keV. On the other hand, bounds on
cosmological domain walls from broken discrete symme-
tries require h’i & 1 MeV, which yields � & 103 TeV. In
this work, we will then consider 1 keV 	 h’i 	 1 MeV.
The upper bound on h’i can easily be increased by O�1�
factors if the domain wall network is frustrated or if the
reheat temperature in the early Universe is below the
symmetry breaking scale.

In a typical supernova, ’ will be thermally produced in
equilibrium and, consequently, the broken symmetry re-
sponsible for m� � 0 will be restored. To see this, we first
note that after the initial collapse of the star, the hot and
dense gas of particles around this core traps neutrinos,
forming a neutrino sphere. The � confinement typically
lasts over the cooling time, �tcool 
 10 s, of the supernova.
Assuming that the neutrinos are in thermal equilibrium
inside the neutrino sphere, their number density is given
by n� 
 T3

SN. The rate of the reaction �L�L ! ’ is given
by �’ ’ y2TSN which, up to phase space factors, is of the
same order as the rate for �L�L ! ’’’, given a ’ 4-point
coupling � ’ 1 [6]. We expect y * 10�7, with m� ’
0:1 eV. This implies �’ * �10�8 s��1.

Thus, ��1
’ � �tcool. Note that �’ also sets the rate for

�L’! �L and �L’! �L’’, mediated by the t-channel
exchange of ’. The mean free path d’ for the interactions
of the ’’s produced inside the neutrino sphere is then given
by d’ 
 ��1

’ & 1 m. The size R� of the neutrino sphere is
comparable to that of a neutron star and we have R� ’
50 km� d’. Given all these considerations, we conclude
that the neutrinos and the ’’s come to thermal equilibrium
inside the neutrino sphere, well before the star begins
cooling. This means that the number density of ’’s is
given by n’ 
 n� 
 T3

SN.
To study finite temperature effects, we write down a

Z‘3-invariant potential for ’ below the weak scale

V�’��y’�L�L��
2’’y�m’3���’’y�2�h:c: (2)

In a typical theory, � ’ m ’ h’i, and � ’ 1. Since
experimental constraints require y < 3� 10�5, the
Yukawa coupling is much smaller than other typical cou-
plings of the ’ system. Hence, Yukawa contributions to
thermal corrections of V�’� are ignored in our analysis.

Once in equilibrium, the ’ field obtains a thermal mass

�T2. At T ’ TSN, this correction is much larger than the
typical negative mass squared responsible for symmetry
breaking: �T2

SN � �2. Hence, the spontaneously broken
symmetry is restored within the neutrino sphere.

The temperature of the neutrino sphere will eventually
fall below the critical temperature Tc at which the symme-
try is broken. Here, we note that due to the presence of the
term m’3, the transition back to the broken phase may be
first order. Quite generically, we expect Tc ’ h’i. Once
T < Tc, the field ’ will roll or tunnel to its vacuum value.
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In doing so, ’ will oscillate about its VEV and radiate its
energy in neutrinos. These neutrinos will carry a typical
energy of order m’ ’ h’i.

To estimate the potential signal, we first note that the
total energy stored in the symmetric phase E’ is given by

h’i4V; V is the volume of the neutrino sphere.
Comparing E’ to ESN for h’i � 1 MeV, we see that
only about 10�6ESN will be emitted directly during the
phase transition. To have a chance to detect such a tiny
neutrino emission, only the largest available detector with
a very low threshold can be used. The IceCube detector has
excellent capabilities to study supernova neutrinos,
although its single event energy threshold is around
100 GeV. Instead, supernova neutrinos will be detected
only by the ice glow their charged current interactions
produce, which leads to an increase in the noise rate of
the photomultiplier tubes [8]. The signal in the IceCube
detector is thus proportional to E3

�, where a factor E2
� is due

to the energy dependence of the cross section and an
additional factor E� accounts for the fact that the number
of Čerenkov photons is directly proportional to E�. The
number of neutrinos emitted in the transition scales as
h’i3. Since E� ’ h’i, the total signal scales like h’i6. On
the other hand, the minimum signal strength needed for a
significant detection depends on the noise of the photo-
tubes f and on the time interval of the neutrino emission

�t’ like 1=
�����������
f�t’

q
. Using a realistic set of numbers to

describe the IceCube detector from Ref. [8], we find that
a minimal signal for the phase transition requires h’i �
5 MeV and �t’ 	 10�4 s. This would require that the
usual upper bounds on h’i be somewhat relaxed and also
that the whole neutrino sphere undergo the phase transition
at the same time, in a neutrino flash.

Next, we will present our quantitative results for the
expected size of the signal from ’-gas decays at the
neutrino sphere. In thermal equilibrium, ’’s will track
the neutrino density and temperature closely; i.e., they
are confined within the neutrino sphere by the ’$ ��
reactions. Neutrinos escape from the surface of the neu-
trino sphere. Similarly, ’’s also escape, but decay into
neutrinos promptly, as they have a lifetime �
 T=��m2

�� 

10�6 s in the star’s rest frame. Here we use T=m’ to
account for time dilation and m� � yh’i. Thus, the neu-
trino sphere will radiate Fermi-Dirac thermal neutrinos, as
well as those from decays of the Bose-Einstein ’ gas.

The relative luminosity is then determined by the energy
fractions carried by neutrinos and ’’s. The two-component
gas of neutrinos and ’’s will have its energy equiparti-
tioned into all available degrees of freedom: 3 fermionic
and 1 bosonic. Thus, the number of effectively massless
degrees of freedom is 3� �7=8� � 1 � 29=8; a fraction
FB � 8=29 ’ 0:28 of the total neutrino luminosity will be
emitted from a Bose-distributed gas. As the most important
detection channel is inverse � decay, we next ask: how
large is the ’-decay contribution to the ��e flux?
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The decay of the ’ particles produces mass eigenstates
instead of flavor eigenstates, hence the branching ratio into
a flavor � depends on the hierarchy of masses mi and the
relevant mixing matrix elements U�i: Br���� /P
ijU�ij

2m2
i . Here, we note that neutrino oscillation data

have provided some information on U�i [9]: jUe1j
2 ’ 0:7

and jUe2j
2 ’ 0:3 whereas for jUe3j

2 there is only an upper
bound of 0.05 at the 3� level. Since Br���� is proportional
to m2

i , we can distinguish three cases. The first one is
normal hierarchy; i.e., m3 is much heavier than m1 and
m2. In this case basically only the state m3 is produced and
Br� ��e� � 1� jUe3j

2 	 0:05. In the case of inverted hier-
archy, m1 and m2 have nearly the same mass and are much
heavier than m3, which gives Br� ��e� � �1=2�jUe1j

2 �
�1=2�jUe2j

2 ’ 1=2. In the case of degenerate neutrinos,
all three masses are approximately the same and Br� ��e� �
�1=3�jUe1j

2 � �1=3�jUe2j
2 � �1=3�jUe3j

2 ’ 1=3. The
branching ratio of the ’ decay determines the flavor ratio
for the bosonic flux component: �B�� � Br����.

In a simple blackbody approximation to the neutrino
emission from the proto–neutron star, there would be again
equipartition and thus the flavor ratio for the Fermi-Dirac
component would be �D�� � 1=3. Certainly, the effect in ��e
would be very small for normal hierarchy in the absence of
neutrino oscillations. More detailed studies of neutrino
emission including various levels of microphysical detail
show a more or less pronounced difference from the black-
body Ansatz and deviations in �D�� from 1=3 up to a factor
of 2 seem possible [10].

In general, the ��e flux arriving at the detector � ��e is a
sum of 6 different initial fluxes at the supernova 	 ���

� ��e � N
X
���

P �� �e�FD�D���	
D
��� � FB�

B
���	

B
����; (3)

where P �� �e denotes the probability of neutrinos of flavor ��
to arrive as ��e at the detector. N is a normalization factor
accounting for the energy and distance of the supernova.
Here, there is basically no difference between ��� and ���.
Both interact with the neutron-star material only via neu-
tral current interaction and any differences in their initial
spectrum would be eliminated by neutrino oscillation via
the atmospheric angle. Thus, it is sufficient to treat ��� and
��� as one flavor ��x with twice the flux. Having now an
effective two flavor problem we can write P �x �e as 1� P �e �e.
Since FB � FD � 1, Eq. (3) yields

� ��e � NfP �e �e�1� FB��
D
��e	

D
��e � FB�

B
��e	

B
��e�

� �1� P �e �e��1� FB��D��x	
D
��x � FB�

B
��x	

B
��x�g: (4)

The �B’s are determined by the solar mixing angle and the
mass ordering. Therefore, we will discuss the different
possibilities for the mass ordering. However, within each
case, we will assume each �B to be known, since the solar
mixing angle is well constrained. P �e �e also depends on the
solar mixing angle, the mass ordering, and additionally on
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the small angle 
13. The value of P �e �e is determined by the
adiabaticity of the neutrino evolution at the Mikheyev-
Smirnov-Wolfenstein resonance which corresponds to the
larger, atmospheric mass splitting. The adiabaticity itself
depends on the value of 
13; for a detailed derivation see,
e.g., Ref. [11].

Since there is only an upper bound on 
13, we will
consider two extreme cases: either sin2
13 is much smaller
than 10�3 or much larger. In the first case, P �e �e �
cos2
12 ’ 0:3, irrespective of the mass ordering; in the
second case P �e �e � cos2
12 for normal mass hierarchy
and P �e �e � 0 for inverted hierarchy. Thus, at least a fraction
1� cos2
12 ’ 0:7 of the ��x flux will contribute to the
observable ��e flux. Therefore, there is always a sizable
contribution to the signal by neutrinos from ’ decay even
for the normal hierarchy, where nearly all ’’s decay into
��x, since at least 70% of ��x will oscillate into ��e.

The spectral distribution for the initial fluxes in the
Fermi-Dirac case is given by the usual expression.
However, for the neutrinos originating in ’ decays, we
have to consider that each ’ particle will decay into two
neutrinos, with flat energy distributions in the star’s rest
frame. Hence, the distribution functions we use are

	D
����E;T ��� �

E2

eE=T �� � 1
(5)

and

	B
����E;T ��� � 2

Z 1
E

dE0

E0

�
E02

eE
0=T �� � 1

�
; (6)

where the factor of 2 in 	B accounts for 2 neutrinos per
decay. We implicitly assume that the temperature of the ’
gas and the Fermi-Dirac gas are the same, but we allow for
different temperatures of ��e and ��x. The signature for the
presence of a ’ gas is thus the observation of up to four
different distributions which compose the signal. Two of
them are the usual Fermi-Dirac distributed ��e and ��x
contributions, and we have another two contributions
which result from ’ decay. The latter two have an average
energy which is approximately only 1=2 of that corre-
sponding to the supernova temperature.

Our simple ansatz does not include possible changes in
the spectral shape with respect to the pure Fermi-Dirac or
Bose distributions. Those changes arise due to the energy
dependent position of the neutrino sphere and due to
diffusion processes on the way out from the neutron star.
Since neutrino density is relatively low outside the neutrino
sphere, Pauli blocking can be ignored [10]. Therefore, one
naively expects that the Bose and Fermi-Dirac components
do not interact on their way out. Thus, transport or diffu-
sion should affect both components in a similar fashion. To
understand the effects of the ’ gas on the position of the
neutrino sphere(s) and its energy and flavor dependence
requires a detailed calculation along the lines of Ref. [10]
and is beyond the scope of this Letter. However, it seems
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TABLE I. Required number of events for a 3� discovery.

Hierarchy Normal Inverted
P �e �e cos2
12 cos2
12 0

Perfect knowledge 538 152 294
N unknown 1107 678 682
N and T ��e unknown 1157 709 682
N, T ��e , and T ��x unknown 10 502 7397 709
N, T ��e , T ��x , and �D��e unknown 13 449 7432 709
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unlikely that such effects could conspire to destroy the
four-component feature.

It remains to estimate the size of the event sample
needed to detect the bimodal nature of the ��e spectrum.
To this end, we convert the flux in Eq. (4) to an event rate
by convolving it with the cross section for inverse � de-
cay which is approximately given by � � 9:52�
10�44E2

� cm2 MeV�2, with a Q value of 1.8 MeV. We
can now compute the event spectrum for a given set of
parameters T ��e ; T�x ; �

D
��e ; P �e �e; FB and ask how well we can

determine or constrain FB from a fit to these simulated
data. We will use the inverse �-decay cross section from
Ref. [12] and assume a typical detector threshold of 7 MeV
[13]. We use the supernova input parameters

T ��e � 4:8 MeV; T�x � 4:8 MeV; �D��e � 0:66;

(7)

corresponding to the simulation in Ref. [10]. With P �e �e �
cos2
12, a supernova with a total energy release of 3�
1053 erg at a distance of 10 kpc, yields
10 000 events, in a
detector with a fiducial mass of 22.5 kt, like Super-
Kamiokande. We simulate our data assuming that indeed
there is a ’ gas, i.e., FB � 0:28.

We perform a least squares fit to the simulated data in the
usual way by constructing a �2 function and asking how
many events are needed to exclude the absence of the ’
gas, FB � 0, at 3� confidence level. More technically, we
want to know how large ��2�FB � 0� is per event. The fit
is constrained to T ��e ; T ��x � 3:8 MeV, which is a conser-
vative range [10]. The number of events needed for a 3�
discovery, under various assumptions about our knowledge
of the supernova, is shown in Table I. From this table, we
see that the Super-Kamiokande detector is quite capable of
detecting the presence of the ’ gas without the need for a
detailed model of the supernova physics.

Establishing the Bose-Einstein origin of the flux from ’
decay will require a large data sample. Here, one can
perform an analysis similar to the one above, using a
Fermi-Dirac distribution for the scalar gas when testing
the �2 difference in the fit to the simulated data. We find
that 105–106 events are needed to reach a conclusion at 3�.
For this purpose, our estimate suggests, one of the megaton
water Čerenkov detectors will be needed.
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In this Letter, we have presented supernova signatures of
neutrino mass models where new massive scalars with
VEV’s in the range keV–MeV generate m� � 0. We
have shown that the scalars will typically come to thermal
equilibrium during the initial stages of supernova cooling.
The subsequent decay of the scalars yields a neutrino flux
with roughly half the average energy of thermally emitted
neutrinos. The lower energy component of the neutrino
flux encodes the Bose distribution of the parent scalars. A
bimodal energy distribution for each flavor is a distinct and
robust signature of the models we consider. This effect
could be readily detectable at the 3� level at the Super-
Kamiokande detector, for a typical galactic supernova.
Observation of these signatures may offer the only direct
access to the physics of neutrino mass generation.
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