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Particle Scattering in Loop Quantum Gravity
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We devise a technique for defining and computing n-point functions in the context of a background-
independent gravitational quantum field theory. We construct a tentative implementation of this technique
in a perturbatively finite model defined using spin foam techniques in the context of loop quantum gravity.
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The lack of a general technique for computing particle
scattering amplitudes is a seriously missing ingredient in
nonperturbative quantum gravity [1,2]. Various problems
can be traced to this absence: the difficulty of deriving the
low energy limit of a theory, of comparing alternative
theories, such as alternative versions of the Hamiltonian
operator in loop quantum gravity (LQG) or different spin
foam models, or comparing the predictions of a theory with
those of perturbative approaches to quantum gravity, such
as perturbative string theory. Here we explore one possi-
bility for defining a general formalism aimed at computing
scattering amplitudes. We outline a calculation strategy,
which can certainly be improved. Our interest is not in a
particular theory, but rather in a general technology to be
used for analyzing different models. For concreteness, we
implement this strategy in the context of a specific model,
and present a well-defined and perturbatively finite expres-
sion, which, under substantial assumptions and approxi-
mations, might be interpreted as a general-covariant
n-point function.

In conventional QFT, we can derive all scattering am-
plitudes from the n-point functions

W�x1; . . . ; xn� � Z�1
Z
D���x1� . . .��xn�e�iS���; (1)

where the xi; i � 1; . . . ; n are points of the background
spacetime, � is the quantum field, S��� its action, and Z
is the integral of the sole exponential of the action.
Alternatively, the n-point functions can be derived from
their Euclidean continuations, defined without the i factor
above. The integral (1) is well defined in perturbation
theory or as a limit of a lattice regularization, under ap-
propriate renormalization. A well-known difficulty of
background-independent quantum field theory is that if
we assume (1) to be well defined with general-covariant
measure and action, then the n-point function is easily
shown to be constant in spacetime [see f.i. [3] ]. This is
the difficulty we address here.

Consider a spacetime region R such that the points xi lie
on its 3D boundary �. Call ’ the restriction of the field �
to �. Then (1) can be written in the form
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W�x1; . . . ; xn� � Z�1
Z
D’’�x1� . . .’�xn�W�’; ���W�’;��;

(2)

where (in the Euclidean case)

W�’;�� �
Z
�j��’

D�Re
�SR��R� (3)

is the integral over the fields in R bounded by the 3D field
’ on �, and SR is the restriction of the action to R; while
W�’; ��� is the analogous quantity defined on the comple-
ment �R of R in spacetime. The field boundary propagator
(3) has been considered in [1,4] and studied in [5]. Assume
that we are interested in an amplitude (1) of an interacting
theory approximated by a free (Gaussian) theory S�0���� in
some regime, and that the interaction term in the action can
be restricted to R. For instance, we are interested in the
scattering of some particles and the scattering region is
inside R. Then we can replace W�’; �R� with its free theory
equivalent

W0�’; ��� �
Z
�j��’

D� �Re
�S�0��R

��� � ���’�: (4)

This integral is Gaussian and can be performed, giving a
Gaussian ‘‘boundary state’’ ���’�, determined by appro-
priate boundary conditions for the field at infinity. For
instance, if we take R to be defined by t > 0, then
�t�0�’� is the conventional vacuum state in the functional
Schrödinger representation. In general, we expect the
boundary state to be given by some Gaussian functional
of the boundary field ’ on �.

Consider now a diffeomorphism invariant theory includ-
ing the gravitational field. Assume that the equations above
hold, in some appropriate sense. The field � represents
the gravitational field, as well as any eventual matter field,
and we assume action and measure to be diffeomorphism
invariant. Two important facts follow [6]. First, because of
diffeomorphism invariance the boundary propagator
W�’;�� is independent from (local deformations of) the
surface �. Thus in gravity the left-hand side of (3) reads
W�’�. Second, the geometry of the boundary surface � is
not determined by a background geometry (there is not
any), but rather by the boundary gravitational field ’ itself.
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We can obtain an indication on the possible forms of the
boundary state in gravity from the free quantum theory of
noninteracting gravitons on Minkowski space. If we take R
to be t > 0, for instance, then �t�0�’� must be approxi-
mated by the well-known Schrödinger vacuum wave func-
tional of linearized gravity. This is a Gaussian state picked
around a classical geometry: the flat geometry of the t � 0
surface in Minkowski space. In the case of a compact R, it
is then reasonable to consider a Gaussian boundary state
�q�’� picked around some 3-geometry q of the boundary
surface �. Thus, we may expect an expression of the form

W�x1; . . . ; xn; q� � Z�1
Z
D’’�x1� . . .’�xn��q�’�W�’�

(5)

to approximate (1) when the interaction term can be ne-
glected outside R. For this equation to be significant, we
have to fix the meaning of the coordinates xi, since the rest
of the expression is generally covariant. There is an ob-
vious choice: the points xi can be defined with respect to
the geometry q. For instance, if n � 4, t01 � t02 � 0, and
t03 � t04 � T [we use x � �t; ~x�] we can take q to be the
geometry of a rectangular box of height T and side L and
interpret ~xi as proper distances from the boundaries of the
box. In other words, the localization of the arguments of
the n-point function can be defined with respect to geome-
try over which the boundary state is picked. Notice that xi
in (5) are then metric coordinates: they refer to gravita-
tional field values. They are not anymore general-covariant
coordinates as in (1). In this manner, we can give meaning
to n-point functions in a background-independent context.

Physically, we can interpret R as a finite spacetime
region where a scattering experiment is performed. The
quantities xi are then relative distances and relative proper
time separations, measured along the boundary of this
region, and determined by (the mean value of) the gravi-
tational field (hence the geometry) on this boundary. This is
the general-relativistic definition of position measurements
in a realistic scattering experiment [see [1] ].

In order to give (5) a fully well-defined meaning, and
compute n-point functions concretely, we need four ingre-
dients: (i) a proper definition of the space of the 3D fields’
integrated over, and a well-posed definition of the integra-
tion measure. (ii) An explicit expression for the boundary
propagator W�’�. (iii) An explicit expression for the
boundary state �q�’�. (iv) A definition of the field opera-
tor ’�x�. In the following, we analyze the status of these
four ingredients in the loop and spin foam approach to
quantum gravity. We consider for simplicity pure gravity
without matter.

(i) In quantum theory, the boundary values of Feynman
integrals can be taken to be the classical dynamical vari-
ables only if the corresponding operators have continuum
spectrum. If the spectrum is discrete, the boundary values
are the quantum numbers that label a basis of eigenstates
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[see [1] ]. In our case, the boundary field ’ represents the
metric of a 3D surface. Let us assume here the LQG results
that the 3D metric is quantized. Therefore we must replace
the continuum gravitational field variable ’with the quan-
tum numbers labeling a basis that diagonalizes some met-
ric degrees of freedom. These can be taken to be (abstract)
spin networks s, or s knots. An s knot is here an equiva-
lence class under [extended [7] ] diffeomorphisms of em-
bedded spin networks S. An embedded spin network is a
graph immersed in space, labeled with spins and inter-
twiners [see [1] ]. The s knots are discrete [7]. Thus, we
rewrite (5) in the form

W�x1; . . . xn; g� � Z�1
X
s

c�s�’s�x1� . . .’s�xn��q�s�W�s�;

(6)

where the meaning of ’s�x� will be specified later on. The
discrete measure c�s� on the space of the s knots is defined
by the projection of the scalar product of the space of the
embedded spin networks [c�s� � 1, except for discrete
symmetries of s]. For simplicity, and in order to match
with the spin foam formalism that we use below, we restrict
here the space of the spin networks to the four-valent ones
and we identify spin networks with the same graph, spins,
and intertwiners (i.e., we ignore knotting and linking).

(ii) The boundary propagatorW�s� is a now a function of
a boundary spin network. A possibility is to identify it with
the boundary propagator W�s� defined in the spin foam
formalism [8]; that is, to identify the spin foam boundary
states s with the s-knot states of LQG [9]. For concrete-
ness, let us choose here the model defined by the
SO�4�=SO�3� group field theory [10], which gives a per-
turbation expansion finite at all orders [11]. This is the
model denoted GFT=C in [1]. [A problem with this choice
is that the GFT=C spins label representations of the self-
dual and anti-self-dual SO�3� subgroups of the SO�4� �
SO�3� � SO�3� decomposition; while in the well-defined
version of LQG, which is based on a real connection, they
label representations of the spatial rotations SO�3� sub-
group of SO�4�. There is a version of LQG based on the
self-dual gauge group—in fact, the original one—but it is
still very poorly understood. Here, however, we disregard
these issues, since our aim is not to single out the physi-
cally correct theory, but only to show that a background-
independent definition of n-point functions is available.]
The amplitude of a spin network s is given in this GFT=C
by

W�s� �
Z
D�fs���e

�
R

�2��
R

�5

: (7)

Here � is a function on �SO�4��4 and the precise meaning
of the (symbolic) integrals in the exponent is detailed in
[1,8]. The quantity fs��� is a polynomial in the field �,
determined by s. It is defined by picking one factor
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�i
�1...�4

�
Z
dg1 . . . dg4��g1; . . . ; g4�R

�j1��1
�1

� �g1� . . .R�j4��4
�4 �g4�vi�1...�4

(8)

per node of s, where vi is the intertwiner of the node and
j1; . . . ; j4 the colors of the adjacent links, and contracting
the indices �i according to the connectivity of the graph of
s. The expression (7) is well defined and finite order by
order in �. [The rigorous proof of this statement is com-
plete up to certain degenerate graphs [8].] The explicit
computation of W�s� is entirely combinatorial and can be
performed in terms of combinations of nJ Wigner symbols
[1]. For completeness, recall that the reason for the defini-
tion (7) is that the expansion of W�s� in � can be written as
a sum over spin foams bounded by the spin network s

W�s� �
X
@��s

A���; (9)

where the spin foam amplitude A��� is the Barrett-Crane
discretization of the exponential of the Einstein-Hilbert
action of the discrete four geometry defined by the spin
foam �. Therefore the definition (7) of W�s� can be inter-
preted as a (background-independent) discretization of the
functional integral (3).

(iii) An expression for the boundary state �q�s� can be
obtained from the analysis of the coherent states in LQG
[12–15]. For concreteness, let us pick here Conrady’s
definition of a coherent state [15]. Other more refined
expression could be used instead. Conrady has defined a
state �0�S� that describes the Minkowski vacuum as a
function of embedded spin networks S, under certain ap-
proximations and assumptions. This function has the prop-
erty of being picked on spin networks that are ‘‘weaves,’’
namely, that approximate a flat metric q when averaged
over regions large compared to the Planck scale [16]. This
vacuum state can be written as follows. Pick Cartesian
coordinates xa; a � 1; 2; 3, on a 3D surface equipped
with a flat metric q and with total volume V. Fix a trian-
gulation T of lattice spacing a, small compared to the
Planck length lp in the metric q. Restrict the attention to
embedded spin networks S living on T . Define the form
factor of a spin network as

FabS � ~x� �
�l4P
96a3

X
v2S

X
e2v

Z 1

0
dt
Z 1

0
dt0 _ea�t� _eb�t0��� ~x� ~xv�;

(10)

where v are the vertices of the spin network S, ~xv their
position, e:t � ea�t� the edges, e 2 v indicates the edges e
adjacent to the vertex v, and _ea � dea=dt. Its Fourier
transform is FabS � ~k� � V�1=2

R
d3xe�i ~k	 ~xFabS � ~x�. Then
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�0�S� �N exp
�
�

1

4l2p

X
~k

j ~kjjFabS � ~k�je�je 
 1�

�
����
V
p

�ab� ~k;0j
2

�
; (11)

where the momenta summed over are the discrete modes
on the triangulation, je is the spin associated to the edge e,
and N is a normalization factor. To understand this con-
struction, notice that if we consider the gravitational field
associated to the spin network (in the sense of the weaves),
qabS � ~x� � FabS � ~x�je�je 
 1�, then �0�S� � �0�qS� where

�0�q� � e�1=4@�
R
d3x
R
d3y��qab� ~x���ab�W�� ~x� ~y��qab� ~y���ab��

(12)

is the Schödinger functional representation of the linear-
ized vacuum state. W�� ~x� ~y� is a lattice regularization of
the vacuum covariance. We can extend this construction to
a 3D (Euclidean) rectangular boundary � simply taking the
product of the Conrady states associated to each of the
eight faces forming �.

We need to carry this result over to the diffeomorphism
invariant s-knot states. Given an abstract spin network s
there will be in general one embedded spin network S�s�
that maximizes the state �0�S�. We can then tentatively
define �0�s� � �0�S�s��. Notice that if �0�S� is picked on
weaves, then the diffeomorphism invariant state �0�s�
defined is picked on the corresponding (‘‘weavy’’) discrete
3 geometries. The maximization condition can be inter-
preted as a gauge choice, picking the coordinate system in
which the 3 geometry is closest to the Euclidean metric.
The gauge invariant state is then chosen to be the restric-
tion of the state to this gauge surface. In the spirit of [15],
we restrict to embedded spin networks S living on T .
Given an s-knot s, there is only a discrete number of
such spin networks that are in the class s: we choose S�s�
that maximizes (11) among these. We expect this definition
(possibly with an appropriate correction of the Conrady
vacuum state) to converge for fine triangulations, making
the background structure chosen effectively irrelevant for a
triangulation sufficiently finer than the Planck length. This
construction provides a finite definition of �0�s�, diffeo-
morphism invariant by definition.

An alternative root for defining the vacuum functional
�0�s� might be obtained from an appropriate T ! 1 limit
of W�s�, following [6,17].

(iv) Finally, we need to define the field ��x� in (6).
Following [15] we write habs �x� � �qabS�s��x� � �

ab�, where
the point x is defined in terms of the boundary metric q and
qabS�s� is defined above (12). An alternative, which we do not
pursue here, is to derive hab�x��S� from the action of two
SU�2� generators [18].

We can now combine the various pieces discussed. Take
a 3D metric space ��; q� isometric to the boundary of a
parallelepiped in 4D Euclidean space with height T and
1-3
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cubic base of side L. Fix a triangulation of �. The simplest
choice is to start from a cubic triangulation of �, and obtain
a four-valent lattice, by splitting each (six-valent) vertex of
the cubic lattice into two vertices. Replacing the various
items discussed into the formal expression (5) we obtain

Wa1b1...anbn�x1; . . . xn;L; T�

� Z�1
LT

X
s

c�s�ha1b1
s �x1� . . . hanbns �xn��q�s�W�s�; (13)

where the sum is over all the s knots that can be embedded
in the triangulation. The normalization factor is the ‘‘vac-
uum to vacuum’’ amplitude ZLT �

P
sc�s��q�s�W�s�.

Equation (13) can be expanded in powers �n. n is the
number of vertices of the spin foam, which is the number
of 4 simplices in a simplicial complex dual to the spin
foam, if this exists. As a rough estimate, we can imagine
each 4 simplex to have Planck size: if classical configura-
tions dominate, the main contribution should come from n
of the order of the 4 volume of the interaction region in
Planck units.

All quantities in (13) are well defined. The expression is
likely to be finite at any order in �. We can take (13) as
a tentative definition of an n-point function within the
formalism of nonperturbative quantum gravity. [On ‘‘par-
ticle’’ states on finite spacial regions, see [19].] More
precisely, we can consider (13) as a definition of the formal
expression

Wa1b1...anbn�x1; . . . ; xn�

� Z�1
Z
Dgga1b1�x1� . . .ganbn�xn�e�SEH�g�; (14)

where SEH is the Einstein-Hilbert action, computed at
relative spacetime distances x1; . . . ; xn evaluated in terms
of the mean value of the quantum gravitational field itself,
on a box encircling the interaction region. The construction
considered opens a natural possibility for the Euclidean
continuation: to take T ! iT, but we know no solid justi-
fication for this at present.

Hypotheses and simplifications used to get to (13) are
severe. Many issues remain open, in particular: the identi-
fication of the spin networks of LQG with the spin foam
ones, the consistency between the finiteness of the inter-
action region and the long range properties of gravity, the
analytic continuation and the proper definition of the vac-
uum state. Our aim here, therefore, is far less ambitious
19130
than to determine the physically correct theory. It is to
show that a background-independent definition of n-point
functions can be given and may lead to perturbatively finite
expressions in a model. The open problem is thus to
determine the consistent and physical correct set of quan-
tities W�s�;�q�s� and habs �x� entering (13). The question is
then whether (13) is indeed finite, convergent, and inde-
pendent from the auxiliary structures used to define it,
when the triangulation is sufficiently finer than the
Planck scale, and whether this construction leads, in a first
approximation, to the general relativity scattering tree
amplitudes.
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