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Thermodynamic Efficiency at Maximum Power
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We show by general arguments from linear irreversible thermodynamics that for a heat engine,
operating between reservoirs at temperatures T0 and T1, T0 � T1, the efficiency at maximum power is
bounded from above by 1�
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Carnot efficiency is one of the cornerstones of thermo-
dynamics. This concept was derived by Carnot from the
impossibility of a perpetuum mobile of the second kind [1].
It was used by Clausius to define thermodynamic’s most
basic state function, namely, the entropy [2]. The Carnot
cycle deals with the extraction, during one full cycle, of
an amount of work W from an amount of heat Q, flowing
from a hot reservoir (temperature T0) into a cold reservoir
(temperature T1 � T0). The efficiency � for doing so
obeys the following inequality:

� �
W
Q
� 1�

T1

T0
: (1)

The equality sign is reached for a reversible process, en-
tailing overall zero entropy production. For practical ap-
plications, the inequality (1) has a limited significance.
Indeed a reversible process, having no preferred direction
in time, has to be infinitely slow. Hence, the corresponding
power is zero (finite workW divided by infinite time). This
observation prompted Curzon and Alhborn [3] (see also
[4]) to investigate the problem of efficiency at nonzero
power. They consider a Carnot construction cycling in a
finite time, in which the only irreversible steps are assumed
to be the transfers of heat between reservoirs and the
auxiliary work-performing system (the so-called endore-
versible approximation). Assuming furthermore a (linear)
Fourier law for the heat transfer, they derive the following
efficiency at maximal power [3]:
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: (2)

This formula has been shown to apply, or to be at least a
good approximation, in a number of other thermodynamic
machines [5], including the quantum realm [6].
Furthermore, one observes in real systems efficiencies
between the Curzon-Alhborn (CA) and Carnot values, in
agreement with economic considerations entailing a com-
promise between power and efficiency. As a result, the CA
paper has triggered the development of a new field of
investigation, referred to as endoreversible thermodynam-
ics, or, more generally, finite time thermodynamics [7].
Because of the elegance of the formula, the simplicity of its
derivation, and the good agreement with observed efficien-
05=95(19)=190602(3)$23.00 19060
cies, the CA result has also become textbook material [8].
However, the derivation is model specific and the endor-
eversible approximation raises the question as to the valid-
ity and generality of the bound (2). We will show below
that the Curzon-Alhborn efficiency is a fundamental result
that follows, without approximation, from the theory of
linear irreversible thermodynamics [9].

Our starting point is a generic setup for the extraction of
work from a flow of heat, see Fig. 1(a). The system
performs work, W � �Fx, against an external force F
(e.g., a mechanical, chemical, or electrical force) with
thermodynamically conjugate variable x. The correspond-
ing thermodynamic force is X1 � F=T, where T is the
temperature of the system. The thermodynamic flux is
J1 � _x. The dot refers to the time derivative. The power
(work by the system per unit time) is thus _W � �F _x �
�J1X1T. The work is performed under the influence of
a heat flux _Q leaving the hot reservoir at temperature T0.
The cold reservoir is at temperature T1 (where T0 � T1).
The corresponding thermodynamic force is X2 � 1=T1 �
1=T0, and the flux is J2 � _Q. The temperature difference
T0 � T1 � �T is assumed to be small compared to T1 �
T0 � T so that one can also write X2 � �T=T2.

Linear irreversible thermodynamics is based on the as-
sumption of local equilibrium with the following linear
relationship between the fluxes and forces:

J1 � L11X1 � L12X2; J2 � L21X1 � L22X2: (3)

The positivity of the entropy production, diS=dt � J1X1 �
J2X2 � 0, implies for the Onsager coefficients Lij that

L11 � 0 L22 � 0; L11L22 � L12L21 � 0: (4)

Furthermore, the Onsager symmetry resulting from the
time reversibility of the microscopic dynamics stipulates

L12 � L21: (5)

The diagonal elements L11 and L22 have a direct physi-
cal meaning. For X2 � 0, one finds _x � L11F=T, hence
L11=T is the mobility of the system in response to the
external force F. For X1 � 0, we have _Q � L22�T=T2,
so that L22=T2 is a coefficient of thermal conductivity. The
off-diagonal elements L12 � L21 describe the cross cou-
pling. These couplings have been studied in a number of
2-1 © 2005 The American Physical Society
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FIG. 1. (a) Generic setup for the conversion of a heat flow _Q
into a work flow _W; (b) cascade construction with a continuum
of auxiliary heat baths; (c) tandem construction with one inter-
mediate heat bath.
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well-documented cases, notably the Seebeck, Thomson,
and Peltier effects [8,9]. Note that their maximal (absolute)
values are limited by Eq. (4). The dimensionless coupling
strength,

q � L12=
���������������
L11L22

p
; (6)

thus obeys �1 � q � �1 [10].
After these preliminaries, the question of efficiency at

maximal power can be easily addressed. One immediately
concludes that the power, _W � �J1X1T � ��L11X2

1 �
L12X1X2�T, is maximal when applying a force Xmax

1 equal
19060
to half the stopping force, namely,

Xmax
1 �

Xstop
1

2
with Xstop

1 � �
L12X2

L11
: (7)

The stopping force corresponds to a value of the external
force F � Xstop

1 T for which the motion of the system halts,
i.e., J1 � _x � 0. The efficiency, which is the output power
over input heat flux, can be conveniently written in terms of
the variable � � X1=X2 as follows:
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T
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The efficiency evaluated at maximal power, �max �
Xmax

1 =X2 � �L12=�2L11�, is then found to be:
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T
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2� q2 : (9)

This efficiency is thus equal to half of the Carnot effi-
ciency, �T=T, times a factor that is a function only of the
coupling strength jqj defined in Eq. (6). In particular, it is
independent of the overall time scale (i.e., the result is
invariant upon rescaling the time). In the optimal limit of
perfectly coupled systems, jqj ! 1, the efficiency is ex-
actly half of the Carnot efficiency [11]. This result is valid
to the lowest order in �T=T, in which limit it actually
coincides with the CA bound, Eq. (2) [1�
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�T=�2T�].
To go beyond the linear approximation in �T=T, while

staying within the framework of linear irreversible ther-
modynamics, we consider a cascade construction as in
Fig. 1(b) [12]. We introduce, between the hot reservoir at
T0, and the cold one at T1, a set of auxiliary heat reser-
voirs, labeled by the index y � j=N, j � 1; . . . ; N � 1 at
decreasing temperatures T�y� [T�0� � T0, T�1� � T1].
These reservoirs will play a role akin to a catalyst, serv-
ing merely as temporary repositories of energy. We
furthermore assume that we have at our disposal a set
of N identical copies of the auxiliary system, oper-
ating between the successive pairs of reservoirs. For sim-
plicity, we assume from the onset that these machines
operate at maximum power with coupling strength
jqj � 1; i.e., each of them transforms heat flux into power
at half of the Carnot efficiency. Finally, we take the con-
tinuum limit N ! 1. Each system and temperature reser-
voir is now characterized by the continuous index
y � j=N, with the step size dy � 1=N tending to zero.
The heat flux traversing the reservoir located at y at tem-
perature T�y�, will be denoted by _Q�y� [ _Q�y � 0� � _Q
being the heat flux leaving the hot reservoir]. The incre-
mental power delivered by the system located between y
and y� dy is denoted by d _W�y�. Since the power is
derived solely from the transfer of the heat, and not from
the internal energy of the system, conservation of en-
ergy implies that _Q�y� dy� � _Q�y� � d _W�y�, whence:
2-2
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(a) _Q�y� � _Q�
Ry

0 d _W�y0�. Assuming that the system op-
erates under the above-mentioned conditions (efficiency at
maximum power, perfect coupling jqj � 1), we have fur-
thermore: (b) d _W�y�= _Q�y�� 
T�y��T�y�dy��=
2T�y��.
By combining (a) and (b), we obtain the following closed
equation for d _W�y�=dy, as a function of the prescribed
temperature profile:

d _W�y�
dy

� �
1

2

d lnT�y�
dy

�
_Q�

Z y

0
dy0

d _W�y0�
dy0

�
: (10)

Differentiating this equation with respect to y, one obtains
a first order differential equation for d _W�y�=dy. Straight-
forward integration [with the appropriate boundary condi-
tion that follows from the application of Eq. (10) at y � 0]
leads to:

d _W�y�
dy
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1

2
_Q

����������
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s
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;

(11)

from which the result _W�y� � _Q
1�
���������������������
T�y�=T�0�

p
� imme-

diately follows. We conclude that the efficiency is given by

� �
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s
; (12)

which is independent of the prescribed temperature profile
and precisely equal to the CA bound cf. Eq. (2).

The above analysis can be repeated for systems that are
not perfectly coupled, i.e., for jqj< 1. The dependence of
the efficiency at maximum power on the ratio of tempera-
tures is then given by ��T1=T0� � 1� �T1=T0�

�=2 with
� � q2=�2� q2�. Hence the efficiency at maximum power
is highest, namely, equal to the CA efficiency, for � � 1,
and deteriorates very rapidly as jqj moves away from 1. A
strong cross coupling is therefore essential to be able to
reach the CA bound. Interestingly, it has been conjectured
that such a strong coupling is present in biochemical
energy production [13].

The fact that the efficiency at maximum power is inde-
pendent of the temperature profile points to an interesting
invariance property, that we illustrate with a tandem con-
struction cf. Fig. 1(c). Suppose that one system operates at
CA efficiency between the high temperature heat bath
(temperature T0, heat flux _Q) and an intermediate bath at
temperature T0, producing a power _W0 � ��T0=T0� _Q. A
second copy of the machine, working in tandem, also
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functions at CA efficiency between the intermediate tem-
perature heat bath (temperature T0, heat flux _Q0 � _Q�
_W0) and the low temperature heat bath T1, producing a

power _W00 � ��T1=T0� _Q0. A short calculation shows that
the overall efficiency is given by � _W0 � _W00�= _Q �
��T1=T0�, i.e., the CA efficiency reproduces itself upon
concatenation. This feature is also a property of machines
operating at Carnot efficiency. In fact, one easily verifies
that the most general function � that reproduces this
invariance (with boundary condition ��1� � 0) is ��t� �
1� ta. The Carnot case corresponds to a � 1 while the CA
bound corresponds to a � 1=2 or more generally a � �=2.
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