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Beyond the Tonks-Girardeau Gas: Strongly Correlated Regime
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We consider a homogeneous 1D Bose gas with contact interactions and a large attractive coupling
constant. This system can be realized in tight waveguides by exploiting a confinement induced resonance
of the effective 1D scattering amplitude. By using the diffusion Monte Carlo method we show that, for
small densities, the gaslike state is well described by a gas of hard rods. The critical density for cluster
formation is estimated using the variational Monte Carlo method. The behavior of the correlation
functions and of the frequency of the lowest breathing mode for harmonically trapped systems shows
that the gas is more strongly correlated than in the Tonks-Girardeau regime.
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The study of quasi-1D Bose gases in the quantum-
degenerate regime has become a very active area of re-
search. The role of correlations and of quantum fluctua-
tions is greatly enhanced by the reduced dimensionality,
and 1D quantum gases constitute well-suited systems to
study beyond mean-field effects [1]. Among these, particu-
larly intriguing is the fermionization of a 1D Bose gas in
the strongly repulsive Tonks-Girardeau (TG) regime,
where the system behaves as if it consisted of noninteract-
ing spinless fermions [2]. The Bose-Fermi mapping of the
TG gas is a peculiar aspect of the universal low-energy
properties which are exhibited by bosonic and fermionic
gapless 1D quantum systems and are described by the
Luttinger liquid model [3]. The concept of a Luttinger
liquid plays a central role in condensed matter physics,
and the prospect of a clean testing for its physical impli-
cations using ultracold gases confined in highly elongated
traps is fascinating [4].

Bosonic gases in 1D configurations have been realized
experimentally. Complete freezing of the transverse de-
grees of freedom and fully 1D kinematics has been reached
for systems prepared in a deep 2D optical lattice [5,6]. The
strongly interacting regime has been recently achieved
using different techniques [7]. Alternatively, the strength
of the interactions can be increased by using a Feshbach
resonance[8]. With this method one can tune the effective
1D coupling constant g1D to essentially any value, includ-
ing �1, by exploiting a confinement induced resonance
[9]. For large and positive values of g1D, the system is a TG
gas of pointlike impenetrable bosons. On the contrary, if
g1D is large and negative, we will show that a new gaslike
regime is entered (super-Tonks gas regime) where the
hard-core repulsion between particles becomes of finite
range and correlations are stronger than in the TG regime.
Some consequences of this new regime on the energetics of
small systems in harmonic traps have already been pointed
out in a preceding study [10]. In this Letter, we investigate
the equation of state and the correlation functions of a
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homogeneous 1D Bose gas in the super-Tonks regime.
We find that the particle-particle correlations decay faster
than in the TG gas and that the static structure factor
exhibits a peak. The momentum distribution and the struc-
ture factor of the gas are directly accessible in experiments
by using, respectively, time-of-flight techniques and two-
photon Bragg spectroscopy. The study of collective modes
also provides a useful experimental technique to investi-
gate the role of interactions and beyond mean-field effects
[5]. Within a local density approximation (LDA) for sys-
tems in harmonic traps, we calculate the frequency of the
lowest compressional mode as a function of the interaction
strength. We find that in the super-Tonks regime the fre-
quency is larger than for a TG gas.

We consider a 1D system ofN spinless bosons described
by the following contact-interaction Hamiltonian:
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where m is the mass of the particles, zij � zi � zj denotes
the interparticle distance between particles i and j, and g1D

is the coupling constant which we take to be large and
negative. The study of the scattering problem of two par-
ticles in tight waveguides yields the following result for the
effective 1D coupling constant g1D in terms of the 3D
s-wave scattering length a3D [9]:
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p
is the characteristic length of the

transverse harmonic confinement producing the waveguide
and A � j��1=2�j

���
2
p
� 1:0326, with ��� � �� the Riemann

zeta function. The confinement induced resonance is lo-
cated at the critical value ac3D � a?=A and corresponds to
the abrupt change of g1D from large positive values (a3D &

ac3D) to large negative values (a3D * ac3D). The renormal-
ization (2) of the effective 1D coupling constant has been
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FIG. 1. Energy per particle and inverse compressibility as a
function of the gas parameter na1D. Open triangles, DMC
results; solid symbols and thick solid line, VMC results and
polynomial best fit; thick dashed line, HR equation of state
[Eq. (4)]. Statistical error bars are smaller than the size of the
symbols. Thin solid and dashed lines, mc2 from the variational
and HR equation of state, respectively.
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recently confirmed in a many-body calculation of Bose
gases in highly elongated harmonic traps using quantum
Monte Carlo techniques [10].

For positive g1D, the Hamiltonian (1) corresponds to the
Lieb-Liniger (LL) model. The ground state and excited
states of the LL Hamiltonian have been studied in detail
[11], and, in particular, the TG regime corresponds to the
limit g1D ! �1. The ground state of the Hamiltonian (1)
with g1D < 0 has been investigated by McGuire [12],
and one finds a solitonlike state with energy E=N �
�mg2

1D�N
2 � 1�=24@2. The lowest-lying gaslike state of

the Hamiltonian (1) with g1D < 0 corresponds to an excited
state that is (meta)stable if the gas parameter na1D � 1,
where n is the density and a1D is the 1D effective scatter-
ing length defined in Eq. (2). This state can be realized in
tight waveguides by crossing adiabatically the confine-
ment induced resonance. The stability of the gaslike state
can be understood from a simple estimate of the energy
per particle. For a contact potential the interaction en-
ergy Eint=N � g1Dng2�0�=2 can be written in terms of
the local two-body distribution function g2�0� �
h y�z� y�z� �z� �z�i=n2, where  y,  are the creation
and annihilation particle operators. In the limit g1D !
�1, one can use for the distribution function the result
in the TG regime [13] g2�0� ’ �2n2a2

1D=3, which does not
depend on the sign of g1D. In the same limit, the kinetic
energy can be estimated by Ekin=N ’ �

2
@

2n2=�6m�, cor-
responding to the energy per particle of a TG gas. For the
total energy E � Ekin � Eint, one finds the result E=N ’
�2
@

2n2=�6m� � �2
@

2n3a1D=�3m�, holding for na1D � 1.
For na1D < 0:25 this equation of state yields a positive
inverse compressibility mc2 � n@�=@n, where � �
dE=dN is the chemical potential and c is the speed of
sound, corresponding to a gaslike phase. We will show that
a more precise estimate yields that the gaslike state is
stable against cluster formation for na1D & 0:35.

The analysis of the gaslike equation of state is carried
out using both the diffusion Monte Carlo (DMC) and
variational Monte Carlo (VMC) methods. The trial wave
function employed in the VMC calculation, as well as in
the DMC one as importance sampling, is of the form
 T�z1; . . . ; zN� �

Q
i<jf�zij�, where the two-body Jastrow

term is chosen as

f�z� �
�

cos	k�jzj � �Z�
 for jzj � �Z;
1 for jzj> �Z:

(3)

The cutoff length �Z is a variational parameter. The wave
vector k for a given �Z is chosen such that the boundary
condition at z � 0 imposed by the �-function potential is
satisfied: �k tan�k �Z� � 1=a1D. For distances smaller than
the cutoff length, jzj � �Z, the above wave function corre-
sponds to the exact solution with positive energy of the
two-body problem with the interaction potential g1D��z�.
For g1D < 0 (a1D > 0) the wave function f�z� changes sign
at a nodal point which, for �Z� a1D, is located at jzj �
a1D. In the calculations, we have used N � 100 particles
with periodic boundary conditions. The variational energy
19040
slowly decreases by increasing the parameter �Z and satu-
rates for large values of �Z. We have chosen to use in all
simulations the value �Z � L=2, where L is the size of the
simulation box. Calculations carried out with larger values
of N up to N � 400 have shown negligible finite size
effects. The nonpositive character of f�z� in Eq. (3) intro-
duces a sign problem in the DMC calculation, which is
overcome using the standard fixed-node (FN) approxima-
tion. This technique provides a rigorous upper bound to the
energy determined by the nodal constraint of the trial wave
function [14].

Results for the energy as a function of the gas parameter
na1D, using both VMC and DMC methods, are shown in
Fig. 1. For small values of the gas parameter na1D � 0:1,
the DMC energies reproduce exactly the equation of state
of a gas of hard rods (HRs) of size a1D (thick dashed line).
The HR energy per particle can be calculated exactly from
the energy of a TG gas by accounting for the excluded
volume [2]:

EHR

N
�
�2
@

2n2

6m
1

�1� na1D�
2 : (4)

Up to na1D � 0:1, the VMC energies are not distinguish-
able from the DMC ones, a feature that points out the high
quality of the trial wave function in Eq. (3). Beyond this
value of the gas parameter, the DMC energy begins to show
instabilities which preclude to continue the calculation of
the metastable gas. Therefore, for larger values of na1D the
energies are estimated only with the VMC energy. It is
worth stressing that for the values of na1D shown in Fig. 1
the VMC calculation is stable and does not show evidence
of long-lived cluster states. This indicates that the overlap
between the trial wave function and states with clusters
7-2
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FIG. 2. Static structure factor S�k� for a gas of HRs at different
values of the gas parameter na1D and for a TG gas (dashed line).
Open symbols stand for the DMC result of the super-Tonks (ST)
regime at na1D � 0:1.

FIG. 3. One-body density matrix g1�z� for a gas of HR at dif-
ferent values of the gas parameter na1D and for a TG gas (dashed
line). Open symbols stand for the DMC result of the super-Tonks
(ST) regime at na1D � 0:1. The solid line corresponds to the
power-law fit g1�z� � const=z0:617 to the DMC data.
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formed is very small. By fitting a polynomial function to
our variational results we obtain the best fit shown in Fig. 1
as a thick solid line. The inverse compressibility obtained
from the best fit is shown in Fig. 1 as a thin solid line and is
compared with mc2 of a HR gas (thin dashed line). As a
function of the gas parameter, mc2 shows a maximum and
then drops abruptly to zero. The vanishing of the speed of
sound implies that the system is mechanically unstable
against cluster formation. Our variational estimate yields
the value na1D ’ 0:35 for the critical value of the density
where the instability appears. This value coincides with the
critical density for collapse calculated in the center of the
trap for harmonically confined systems [10].

For small values of the gas parameter, the HR model also
describes correctly the correlation functions of the super-
Tonks gas. Where the DMC calculations are feasible, we
will explicitly show the HR behavior by direct comparison
with the DMC results based on the trial wave function
Eq. (3). The correlation functions of a HR gas of size a1D

can be calculated from the exact wave function [15]  HR �Q
i<jj sin	��z0i � z

0
j�=L
j, where the set of coordinates fz0jg

is obtained from the set fzjg with the ordering z1 < z2 �

a1D < z3 � 2a1D < � � �< zN � �N � 1�a1D using the
transformation z0j � zj � ja1D, with j � 1; 2; . . . ; N. We
focus our attention on the static structure factor S�k�, which
in terms of the density fluctuation operator �k �

PN
i�1 e

ikzi

is defined as

S�k� �
1

N
h HRj�k��kj HRi

h HRj HRi
; (5)

and the one-body density matrix

g1�z� �
N
n

R
 
HR�z1� z; . . . ; zN� HR�z1; . . . ; zN�dz2 � � �dzNR

j HR�z1; . . . ; zN�j
2dz1 � � �dzN

:

(6)

Contrary to the TG case, it is not possible to obtain
analytical expressions for g1�z� and S�k� in the HR prob-
lem. We have calculated them using configurations gener-
ated by a Monte Carlo simulation according to the exact
probability distribution function j HRj

2. The results for the
static structure factor are shown in Fig. 2. Compared to
S�k� in the TG regime, a clear peak is visible for values of k
of the order of twice the Fermi wave vector kF � �n and
the peak is more pronounced as na1D increases. The
change of slope for small values of k reflects the increase
of the speed of sound cwith na1D. The DMC result for S�k�
at the density na1D � 0:1 is also shown in Fig. 2; the
agreement with the HR S�k� at the same density is
remarkable.

The long-range behavior of g1�z� can be obtained from
the hydrodynamic theory of low-energy excitations [16].
For jzj � �, where � � @=�

���
2
p
mc� is the healing length of

the system, one finds the power-law decay g1�z� / 1=jzj�,
where the exponent � is given by � � mc=�2�@n�. For a
TG gas, mc � �@n and thus �TG � 1=2. For a HR gas,
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one finds � � �TG=�1� na1D�
2 and thus �> �TG. This

behavior is clearly shown in Fig. 3, where we compare
g1�z� of a HR gas with na1D � 0:1 and 0.2 to the result of a
TG gas [17]. The DMC result for g1�z� at na1D � 0:1 is
also shown in the figure; its long-range behavior matches
the expected behavior of the HR model at this density,
g1�z� / 1=jzj0:617. The long-range power-law decay of
g1�z� is reflected in the infrared divergence of the momen-
tum distribution n�k� / 1=jkj1�� holding for jkj � 1=�.
The power-law decay of g1�z� and the linear slope of S�k�
at low momenta show that the super-Tonks gas belongs to
the Luttinger liquid universality class [3]. The larger value
of � and the peak in S�k� show that correlations are
stronger and more short ranged than in the TG gas.

Another possible experimental signature of the super-
Tonks regime can be provided by the study of collective
7-3



FIG. 4. Square of the lowest breathing mode frequency, !2, as
a function of the coupling strength Na2

1D=a
2
z for the LL

Hamiltonian (g1D > 0) and in the super-Tonks regime (g1D <
0). The dashed line refers to the HR expansion (see text).
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modes. We calculate the frequency of the lowest compres-
sional mode of a system of N particles in a harmonic
potential Vext �

PN
i�1 m!

2
zz

2
i =2. We make use of LDA,

which allows us to calculate the chemical potential of the
inhomogeneous system ~� and the density profile n�z� from
the local equilibrium equation ~� � �	n�z�
 �m!2

zz2=2,
and the normalization condition N �

R
R
�R n�z�dz, where

R �
�����������������������
2 ~�=�m!2

z�
q

is the size of the cloud. For densities n
smaller than the critical density for cluster formation, �	n

is the equation of state of the homogeneous system derived
from the fit to the VMC energies (Fig. 1). From the knowl-
edge of the density profile n�z�, one can obtain the mean
square radius of the cloud hz2i �

R
R
�R n�z�z

2dz=N, and
thus, making use of the result [18] !2 � �2hz2i=
�dhz2i=d!2

z�, one can calculate the frequency ! of the
lowest breathing mode. Within LDA, the result will depend
only on the dimensionless parameter Na2

1D=a
2
z , where

az �
���������������
@=m!z

p
is the harmonic oscillator length. For g1D >

0, i.e., in the case of the LL Hamiltonian, the frequency of
the lowest compressional mode increases from ! �

���
3
p
!z

in the weak-coupling mean-field regime (Na2
1D=a

2
z � 1) to

! � 2!z in the strong-coupling TG regime (Na2
1D=a

2
z �

1). The results for ! in the super-Tonks regime are shown
in Fig. 4 as a function of the coupling strength. In the
regime Na2

1D=a
2
z � 1, where the HR model is appropriate,

we can calculate analytically the first correction to the
frequency of a TG gas. One finds the result ! � 2!z	1�
�16

���
2
p
=15�2��Na2

1D=a
2
z�

1=2 � � � �
. Figure 4 shows that
this expansion accurately describes the frequency of the
breathing mode when Na2

1D=a
2
z � 1, for larger values of

the coupling strength the frequency reaches a maximum
and drops to zero at Na2

1D=a
2
z ’ 0:6. The observation of a

breathing mode with a frequency larger than 2!z would be
a clear signature of the super-Tonks regime.

In conclusion, we have pointed out the existence of a
strongly correlated regime in quasi-1D Bose gases beyond
the Tonks-Girardeau regime. This regime can be entered
19040
by exploiting a confinement induced resonance of the
effective 1D scattering amplitude. A FN-DMC simulation
of the super-Tonks metastable gas up to a value of the gas
parameter na1D � 0:1 has been carried out. In this regime,
the results obtained for the energy, the structure factor, and
the one-body density matrix are reproduced by the exactly
solvable HR model. An upper bound of the critical density
for the onset of instability against cluster formation is
estimated using the VMC method. For harmonically
trapped systems, we calculate the frequency of the lowest
compressional mode.
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