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Local Pair Correlations in One-Dimensional Bose Gases
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We measure photoassociation rates in one-dimensional Bose gases, and so determine the local pair
correlation function over a wide range of coupling strengths. As bosons become more strongly coupled,
we observe a tenfold decrease in their wave function overlap, thus directly observing the fermionization of
bosons.
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Ultracold atoms in optical lattices are well controlled
many-body physical systems [1]. Theoretical models that
are intractable on classical computers can be designed
directly into an experiment, and the solutions can be mea-
sured. Coupled spin systems [2–4], d-wave paired super-
conductors [5], and new quantum phases [6] are among
the problems that could be solved in this way. One-
dimensional (1D) Bose gases are ideal test beds for this
approach, since they are among the few many-body sys-
tems that can be exactly solved theoretically [7–9]. One
can even derive properties that are notoriously difficult to
calculate in strongly coupled systems, like the local pair
correlation, g�2� [10], which is proportional to the proba-
bility of observing two particles in the same place. In this
Letter, we present a measurement of g�2� for 1D Bose gases
across a 30-fold range of coupling strength. There is an
order of magnitude reduction in g�2� for the strongest
coupling, and excellent agreement with theory over the
whole range.

1D Bose gases are typically parametrized by the univer-
sal coupling constant � [7]. The behavior of 1D Bose gases
in different coupling regimes is readily characterized by
the local pair correlation, g�2� � h��z0�y2��z0�2i=n1D

2,
where ��z0� is the atom field operator and n1D�h��z

0�y�
��z0�i is the 1D linear density [10]. A dense, weakly inter-
acting 1D Bose gas (��1) is described well by mean-field
theory. Its g�2� is close to 1, just as in a 3D Bose-Einstein
condensate (BEC). A dilute, strongly interacting 1D Bose
gas (��1) is a Tonks-Girardeau (TG) gas. Its g�2� ap-
proaches zero, just like a gas of noninteracting 1D fermi-
ons. The strong coupling limit, where theory is difficult in
more than 1D, is especially important in condensed matter
physics. Atomic Bose gases have only attained strong
coupling in Mott insulator states [11] and in 1D [12,13].
Previous 1D experimental results in the intermediate cou-
pling [14–16] and TG regimes [12,13] have been in accord
with the exact 1D Bose gas theory [7,17]. But these results
have relied on mostly indirect manifestations of strong
coupling. In contrast, g�2� directly reveals the extent of
wave function overlap.

Large correlations among bosonic wave functions in 1D
act in a way that is mathematically analogous to Pauli
exclusion for fermions [7,9]. As for fermions, strongly
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coupled 1D boson wave functions have little overlap on
distance scales that are small compared to the wave func-
tions [10]. This small scale can still be much larger than the
Å range in which electron clouds repel each other, where
no atoms in any dimension can have significant wave
function overlap. Our measurements of g�2� are carried
out at such (nanometer scale) separations.

We start the experiment with a nearly (95%) pure 87Rb
BEC of 2:5–3� 105 atoms in the lowest energy state F �
mF � 1, produced in a compressible crossed dipole force
trap (made with 1:06 �m light) and a levitating magnetic
field [18]. 1D Bose gases are created by adiabatically
superimposing a 600 �m waist, blue-detuned 2D optical
lattice on the crossed dipole trap [see Fig. 1(a)]. This yields
arrays of �1000–8000 parallel, nearly identical, 1D traps,
depending on the power per crossed dipole beam, Pcd. The
number of atoms per tube, Ntube, is on average between 40
and 240 [13]. Atoms in these traps are 1D because the
lowest transverse vibrational excited state is well above all
other dynamical energy scales. The atomic wave functions
have transverse extent, but since the transverse wave func-
tions do not change during the experiment, the dynamics
are purely 1D. The crossed dipole trap, with its beam waist
adjusted to 120 �m, provides variable harmonic confine-
ment along the 1D tubes created by the 2D optical lattice.
In all experimental runs, the final depth of the 2D lattice
potential exceeds 30Erec, so that tunneling among tubes is
negligible [13].

For atoms confined in 1D, the interaction strength is
described by

� 	
2a

n1Da
2
r

(1)

(as long as a� ar), where n1D is the linear density, a is the
(3D) positive scattering length (a � 5:3 nm for our atoms),
and ar � �@=m!r�

1=2 is the transverse extent of the atomic
wave function (ar 
 35 nm in our measurements), where
m is the atomic mass and !r is the transverse oscillation
frequency [19]. By changing the optical lattice depth, we
change ar, and by changing Pcd, we change n1D [13].
Specifically, high Pcd leads to high n1D, both because the
high initial BEC density leads to more atoms per tube in the
2D lattice, and because those atoms are more compressed
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FIG. 1 (color online). Experimental geometry. (a) Laser beam
configuration, top view. Four blue-detuned beams with 600 �m
waists, shown as fat arrows incident from the corners of the
frame, create a 2D optical lattice with 390 nm lattice constant.
The 2D lattice is superimposed on a pair of 120 �m waist, red-
detuned laser beams that form a crossed dipole trap. The
combination of these beams creates a trapped array of parallel
1D Bose gases, as illustrated in the circular blow-up of the
central region. The 280 �m waist photoassociation beam
(labeled PA), uniformly illuminates all the 1D Bose gases.
(b) Trapped atom distribution, side view. The atoms are confined
radially in the vibrational ground state, with characteristic radii
that range from 35 to 50 nm. The full axial lengths of the atom
clouds range from 15 to 50 �m, much smaller than the photo-
association beam. There are thousands of independent 1D Bose
gases. Aspect ratios range from �150 to 700.
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in 1D. As Pcd is varied from 36 mW to 3.1 W, the 3D
Thomas-Fermi radius ranges from 20 �m to 8:2 �m,Ntube

for the central tubes ranges from 65 to 390, and the axial
oscillation frequency, !z=2�, ranges from 15 Hz to
150 Hz. In this way, we can vary � from 0.37 to 11,
reaching a factor of 2 stronger coupling than has previously
been achieved for a freely moving 1D Bose gas [13].

The maximum spontaneous emission rates are 0:4 s�1

due to the lattice light, which is detuned from the D2-line
resonance by 3.2 THz, and 0:28 s�1 due to the crossed di-
pole light. We measure that nonadiabatic heating due to the
lattice being turned on is minimal [13]. Because the heat-
ing that results from spontaneous emission is less severe
when the 1D density is lower, we can decrease the lattice
detuning to 1.6 THz for the smallest density.

Atomic local [20–23] and nonlocal [24,25] pair corre-
lations have previously been measured in contexts other
than 1D Bose gases. In our 1D Bose gases, we measure g�2�

by photoassociation, using light resonant with the mo-
lecular state j0�g��S1=2 � P3=2�; � � 1; J � 2i, located
�26:7 cm�1 below the D2 line, where � and J are the
vibrational and rotational quantum numbers, respectively
[26]. Under our experimental conditions, the stimulated
transition rate between the continuum ground state and the
bound molecular state, �stim, is much less than the sponta-
neous decay rate of the molecule, �spon (�2�� 12 MHz).
The photoassociation rate, K3D, can be calculated by two-
body s-wave scattering theory [27]. For a pure 3D BEC,

K3D �
8�@
mk

�stim

�spon

where @k is the relative momentum of the two particles. For
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the small k’s that prevail in ultracold atom experiments,
�stim is proportional to k, making K3D velocity independent
[27]. Photoassociation is most likely to occur at very short
interparticle distances, between 1.6 and 1.9 nm [28]. This
distance scale is much less than the typical extent of the
trapped atom wave functions, either in 1D (>� 300 nm)
or transversely (>35 nm). Therefore the photoassociation
rate in 1D is proportional to the 3D photoassociation rate,
but reduced by the loss of wave function overlap due to the
atoms being confined to 1D,

K1D � K3Dg
�2�: (2)

The 60 mW, 280 �m waist photoassociation beam is
locked to a Fabry-Perot cavity that is, in turn, locked to the
87Rb D2 resonance, giving a linewidth below 2 MHz,
smaller than the measured 13 MHz linewidth of the photo-
association spectrum. The beam is linearly polarized per-
pendicular to the 7 Gauss bias magnetic field and
propagates in the horizontal plane of the 2D lattice. It is
much larger than the trapped atom region [see Fig. 1(b)].
The photoassociation beam is pulsed on for between 25 �s
and 1 ms, which is at most 1=65 of the axial oscillation
period. The pulse is short enough that there is negligible
axial redistribution of atoms, either due to loss of atoms or
the photoassociation beam’s dipole force. The rate that
photoassociation light is scattered from the D2 line is
8 s�1, and can be neglected.

Immediately after photoassociation, we shut off all trap-
ping potentials and take a high intensity fluorescence im-
age [29] to determine the number of remaining atoms,
NrPA. Sixteen images are averaged for each data point.
When the photoassociation pulse is 700 MHz from the
molecular resonance, the number of the atoms left,
NorPA, is similarly measured. The off-resonant photoasso-
ciation pulse causes less than 1% loss. The measured frac-
tional loss due to photoassociation, f, is given by
f � �NorPA � NrPA�=NorPA.

Figure 2 shows f as a function of the photoassociation
time, TPA, for two illustrative trap conditions. The solid
curves are fits of the shorter time data to the solution of a
two-body loss equation. For the rest of the data in this
Letter, we use TPA’s that keep f less than 0.15, so that the
loss rate is approximately constant. In this way, we experi-
mentally determine the fractional photoassociation loss
rate, �L � �

1
N
dN
dt � f=TPA.

We collect data in sets characterized by the initial 3D
BEC density, which we vary from 3:2� 1013 cm�3 to
4:1� 1014 cm�3 by adjusting Pcd. At each initial density,
we measure �L both in the 3D BEC and for a range of
optical lattice depths, i.e., of transverse confinement in 1D
tubes. In Fig. 3, for each set, we plot the ratio of �L
normalized to the 3D BEC value of �L as a function of
the optical lattice depth, in units of the recoil energy, Erec.

Figure 3 demonstrates the decrease in g�2� with increas-
ing � in two ways. Within each curve the axial confinement
is fixed, as is the number of atoms in each tube. The
6-2



0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400 1600

f(
%

)

T
PA

(µs)

FIG. 2. Atom loss by photoassociation. The fractional loss is
plotted as a function of the photoassociation time. The circles
(squares) correspond to Pcd � 320 mW (36 mW). The solid
curves are fits to a theory that assumes that dN=dt is proportional
to N2 up to 600 �s (800 �s) for 320 mW (36 mW). The error
bars reflect measured statistical fluctuations.
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individual curves show that �L only weakly depends on the
lattice depth, even though the atoms become more tightly
confined as the lattice depth is increased. The results are
most striking when we compare the curves from top to
bottom. For the top curve, which corresponds to high initial
density (n3D � 4:1� 1014 cm�3), turning on the 2D lat-
tice increases the loss by as much as a factor of 2.8. The
extra loss can be qualitatively understood because the
lattice confines the atoms in a smaller volume. But the
increased losses get progressively smaller for lower initial
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FIG. 3 (color online). The effect of 1D confinement on photo-
associative loss. The ratio of loss in 1D to loss in 3D is shown as
a function of the 2D lattice depth. The error bars are standard
deviations that characterize fluctuations in the total number of
the atoms (which are �10%). The different curves correspond to
different crossed dipole trap powers, and hence different n1D. In
order from higher to lower density, and from top to bottom on the
graph: squares, Pcd � 3:1 W; circles, Pcd � 1 W; diamonds,
Pcd � 320 mW; up triangles, Pcd � 110 mW; and down tri-
angles, Pcd � 36 mW. The crosses correspond to Pcd �
36 mW, but with a lattice detuning of 1.6 THz instead of
3.2 THz, and the larger Erec points are omitted. The solid lines
are to guide the eye.
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densities, until by the lowest two curves (for which the
initial density is n3D � 3:2� 1013 cm�3), turning on the
lattice actually decreases �L. That is, we reach a regime
where the reduction of g�2� associated with being in 1D is
greater than the local density enhancement due to the 1D
confinement.

To quantitatively compare our measurements with the
exact 1D Bose theory for g�2���� [10], we need to apply the
theory to our ensemble of atoms, each of which experi-
ences a different local density, and hence a different �.
Since, as we shall see, g�2� varies roughly linearly with
log��� over the range of � used in our experiment, we
define �eff for an ensemble of atoms so that log��eff� is the
weighted average of log���. As we show below, experi-
mental values for g�2���eff� can then be calculated without
reference to the 1D theory. Each tube sees nearly identical
trap light, but Ntube is tube dependent. Within a given tube,
n1D�z� � Ntubes�z�, where s�z� is a distribution function
that depends on Ntube and the trap details, and can be
numerically calculated using the results in Ref. [17].
Such calculations and Eq. (1) allow us to calculate �eff

for each tube, and then for the ensemble of tubes.
As for any two-body loss process, the governing equa-

tion for �L within a tube is

�L �
2K3D

N

Z
n3D�r�2g�2��z�dV; (3)

where we have used Eq. (2). n3D within each tube depends
on n1D and the 2D harmonic oscillator ground state wave
function,

n3D��; z� �
n1D�z�

�a2
r

exp
�
�
�2

a2
r

�
: (4)

If we replace g�2��z� by g�2���eff�, we can pull it out of the
integral in Eq. (3) so that

g�2���eff� �
�L

2K3Dhn3Di
: (5)

We calculate hn3Di by averaging n3D��; z� within each tube
and then over all the tubes. To do so, we assume that the
atoms are distributed among tubes according to a Thomas-
Fermi distribution with the length scale associated with the
source 3D BEC. This is only a rough and convenient
approximation to the actual distribution when a 3D
Thomas-Fermi profile is projected onto tubes. The actual
distribution can change as a result of tunneling among
tubes during the adiabatic turn-on of the lattice. Our ex-
perimental knowledge of the exact distribution is limited
by the spatial resolution of our imaging. To address this
uncertainty, we repeat our calculations with other distribu-
tion functions, and find both �eff and n3D to be quite
insensitive to the exact distribution among tubes. For ex-
ample, �eff and n3D each change by less than 5% if we
assume a flattop distribution among the tubes with the
measured rms width and the same total number of atoms.
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FIG. 4 (color online). The local pair correlation function vs the
coupling strength. The solid blue line is the 1D Bose gas theory
[10]. The points and associated error bars are generated from the
same data used in Fig. 3. Here, g�2� is calculated for each point
and the points are arranged according to the coupling parameter
�eff . The data labels correspond to those in Fig. 3. A scale factor
proportional to K3D has been determined by a weighted least
squares fit of the data to the theory. This value of K3D accords
with our direct measurement of K3D using 3D BECs.
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The solid curve in Fig. 4 is the result of the zero
temperature 1D Bose gas theory for g�2���� [10]. We use
Eqs. (4) and (5) to plot the data from Fig. 3 (with corre-
sponding labels) in Fig. 4.K3D is left as a free parameter, so
that it acts as a scaling factor for the data. A weighted least
squares fit to the theory determines K3D � 4:3�
10�10 cm3=s. Over our measured range between �eff �

0:37 and 11, g�2���eff� varies by an order of magnitude.
The agreement between theory and experiment is excellent
over the whole range of �eff . In the weak coupling limit,
g�2� approaches one, like a 3D BEC. Strong coupling
makes g�2� approach zero, showing that strongly interact-
ing bosons act like fermions.

Our experiment provides a more direct way to measure
K3D, using the �L results for the 3D BECs, and Eq. (5) with
g�2� set equal to 1. Averaging these results, we determine
K3D � 4:7� 10�10 cm3=s, with a statistical standard de-
viation (�Kst) of 0:3�10�10 cm3=s. The systematic uncer-
tainty in this measurement of K3D is 0:6� 10�10 cm3=s,
larger than �Kst, primarily due to our �5 �m uncertainty
in the crossed dipole beam waist, which affects hn3Di in
Eq. (4).

We can compare the direct measurement of K3D to the
value determined from Fig. 4 in order to test the 1D Bose
theory without any free parameters. Because the system-
atic uncertainty in the direct measurement of K3D is highly
correlated with the systematic uncertainty in hn3Di for the
1D Bose gas, the systematic uncertainty in the scale for
g�2���eff� turns out to be less than 1% (0:1� �Kst=K3D).
The no free parameter test is thus quite robust against
systematic errors. The two separate determinations of
K3D agree to within 9%, or 1:3� �Kst. We have thus tested
the 1D Bose theory to within this uncertainty.
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In conclusion, we have created a 1D Bose gas, which is a
rare example of an exactly theoretically solvable many-
body system. The central result of the solutions, that bo-
sonic wave functions overlap progressively less as the
strength of their interactions is increased, is quantitatively
confirmed in the experiment. The specific technique used
here could also be used to study pair correlations at non-
zero temperatures [30], in 2D Bose gases [31], and in a
wide variety of lattice gases. The success of the experiment
presented here suggests that similar experiments might be
used to find the solutions of previously unsolvable many-
body models [2–6].

We acknowledge discussions with Ken O’Hara and Kurt
Gibble, and financial support from the National Science
Foundation, Grant No. PHY-0457206.
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[25] S. Fölling et al., Nature (London) 434, 481 (2005).
[26] M. Theis et al., Phys. Rev. Lett. 93, 123001 (2004).
[27] J. L. Bohn and P. S. Julienne, Phys. Rev. A 56, 1486 (1997).
[28] A. Fioretti et al., Eur. Phys. J. D 15, 189 (2001).
[29] M. T. DePue et al., Opt. Commun. 180, 73 (2000).
[30] K. V.Kheruntsyan et al.,Phys.Rev.Lett. 91, 040403 (2003).
[31] D. Rychtarik et al., Phys. Rev. Lett. 92, 173003 (2004).


