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Observation of Phase Defects in Quasi-Two-Dimensional Bose-Einstein Condensates
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We have observed phase defects in quasi-2D Bose-Einstein condensates close to the condensation
temperature. Either a single or several equally spaced condensates are produced by selectively evaporating
the sites of a 1D optical lattice. When several clouds are released from the lattice and allowed to overlap,
dislocation lines in the interference patterns reveal nontrivial phase defects.
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Low-dimensional bosonic systems have very different
coherence properties than their three-dimensional (3D)
counterparts. In a spatially uniform one-dimensional (1D)
system, a Bose-Einstein condensate (BEC) cannot exist
even at zero temperature. In two dimensions (2D) a BEC
exists at zero temperature, but phase fluctuations destroy
the long range order at any finite temperature. At low
temperatures the system is superfluid but it contains a finite
density of bound vortex-antivortex pairs. At the Kosterlitz-
Thouless (KT) transition temperature [1-3] the unbinding
of the pairs becomes favorable and the system enters the
normal state.

In recent years, great efforts have been made to study the
effects of reduced dimensionality in trapped atomic gases
[4]. In both 1D and 2D, the density of states in a harmonic
trap allows for Bose-Einstein condensation at finite tem-
perature. In contrast to 1D and elongated 3D systems [5—
13], the coherence properties of 2D atomic BECs have so
far been explored only theoretically [14—17]. In previous
experiments, quasi-2D BECs [6,18—-20] or ultracold clouds
[21] were produced in specially designed ‘“‘pancake’ trap-
ping potentials. The sites of a 1D optical lattice usually
also fulfill the criteria for 2D trapping [22-25]; the diffi-
culty in these systems is to suppress tunneling between the
sites, and to address or study them independently [26,27].

In this Letter, we report the production of an array of
individually addressable quasi-2D BECs. By selectively
evaporating the atoms from the sites of a 1D optical lattice,
we can produce either a single or several equally spaced
condensates. The distinct advantage of this approach is that
it opens the possibility to study the phase structures in
quasi-2D BECs interferometrically. We have observed in-
terference patterns which clearly reveal the presence of
phase defects in condensates close to the ideal gas Bose-
Einstein condensation temperature. We discuss the pos-
sible underlying phase configurations.

Our experiments start with an almost pure 8’Rb conden-
sate with 4 X 10° atoms in the F = my; = 2 hyperfine
state, produced by radio-frequency (rf) evaporation in a
cylindrically symmetric loffe-Pritchard (IP) magnetic trap.
The trapping frequencies are w./27 = 12 Hz axially, and
w, /27 = 106 Hz radially, leading to cigar-shaped con-
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densates with a Thomas-Fermi length of 90 um and a
diameter of 10 pm.

After creation of the BEC we ramp-up the periodic
potential of a 1D optical lattice, which splits the 3D
condensate into an array of independent quasi-2D BECs
[see Fig. 1(a) and [24] ]. The lattice is superimposed on the
magnetic trapping potential along the long axis (z) of the
cigar. Two horizontal laser beams of wavelength A =
532 nm intersect at a small angle # to create a standing
wave with a period of d = A/[2sin(0/2)]. The blue-
detuned laser light creates a repulsive potential for the
atoms, which accumulate at the nodes of the standing
wave, with the radial confinement being provided by the
magnetic potential. Along z, the lattice potential has the
shape V(z) = Vycos*(wz/d), with V,/h = 50 kHz.
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FIG. 1. An array of individually addressable quasi-2D BECs.
(a) A 1D optical lattice splits a cigar-shaped 3D condensate into
15-30 independent quasi-2D BECs. (b) A magnetic field gra-
dient along the lattice axis allows us to selectively address the
sites by an rf field. We evaporate the atoms from all the sites
except those within a frequency gap A. (c¢) Steps in the BEC
atom number N, as a function of A, corresponding to 0, 1, and 2
sites spared from evaporation. Each data point represents a single
measurement.
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For the work presented here we have used two lattice
periods, d; = 2.7 pm and d, = 5.1 pum. The respective
oscillation frequencies along z are w,/27 = 4.0 kHz and
w,/2m = 2.1 kHz. At the end of the experimental cycle
(described below), the BEC atom numbers in the most
populated, central sites are N; = 10* and N, = 2 X 10*.
We numerically solve the Gross-Pitaevskii equation to get
the corresponding chemical potentials w;/h = 2.2 kHz
and w,/h = 2.5 kHz, where the hiw, ,/2 zero-point offset
is suppressed in our definition of w. In the smooth cross-
over from 3D to 2D, the condensates in the shorter period
lattice are thus well in the 2D regime with wu,/(hw;) =
0.6, while for the clouds in the longer period lattice this
ratio is 1.2.

Since the radial trapping is purely magnetic, we can
remove atoms from the lattice by rf induced spin flips to
untrapped Zeeman states. In order to address the lattice
sites selectively, we apply a magnetic field gradient b’
along z [27,28]. This creates an energy gradient along the
lattice direction, and splits the resonant frequencies for
evaporation of atoms from two neighboring sites by
Avy, = ugb'd,,/(2h), where g is the Bohr magneton
[Fig. 1(b)]. We use gradients up to 26 G/cm, correspond-
ing to Av; =5 kHz and Av, = 9 kHz. These splittings
are larger than the chemical potentials w, ,, and the rf Rabi
frequency (=2 kHz). The lattice sites can thus be ad-
dressed individually.

The experimental routine to produce an adjustable num-
ber of condensates starts with a slow, 200 ms ramp-up of
the gradient b'. As illustrated in Fig. 1(b), we then evapo-
rate the atoms from both ends of the cigar, sparing only the
central sites within a variable rf frequency gap A. We
perform this evaporation in 100 ms, switch off the rf field,
and ramp b’ back to zero in another 200 ms [29]. During
this time, some heating of the remaining clouds occurs, and
they reach a temperature slightly below the condensation
temperature, as we discuss in detail below.

To verify that we can address the lattice sites individu-
ally, we measure the total number of condensed atoms left
in the trap as a function of A. An example of such a plot is
shown in Fig. 1(c) for d, = 5.1 um and b’ = 22 G/cm.
The magnetic and optical trap were switched off simulta-
neously and the atomic density distribution was recorded
by absorption imaging along z after 18 ms of time-of-flight
(TOF) expansion. The atom number increases in steps of
N, = 2 X 10* every 8 kHz, in agreement with the expected
Awv,. We see three clear plateaus corresponding to 0, 1, and
2 sites spared from evaporation. For the shorter lattice
period the frequency splitting is comparable to the chemi-
cal potential. This results in some rounding off of the steps,
but the plateaus remain visible.

In the first set of experiments, we have characterized the
free expansion of a single quasi-2D BEC [30]. The clouds
were released from the 5.1 wm period lattice and imaged
after up to 18 ms of TOF. We extract the axial (/) and the
radial (w) rms size of the cloud from Gaussian fits to the

density distribution. As might be expected, the observed
expansion is predominantly one dimensional, along the
axial direction. For short expansion times, t = 3 ms, the
apparent axial size is limited by our imaging resolution, but
for longer times it follows the linear scaling [ = vt, with
v = 2.7 mm/s. This value is comparable to the calculated
velocity in the harmonic oscillator ground state along z,

v, = \Jhw,/(2m) = 2.1 mm/s, where m is the atomic
mass. We find that the radial expansion can be described
by the empirical law w = wy\/1 + (t/1,)%, with wy =
44 pm and t, = 5.7 ms. The same law describes the
radial expansion of a cigar-shaped 3D condensate, with
fo = w]' [31], where @ ' = 1.5 ms for our trap. The
radial expansion of our 2D gas is slower by a factor of =
4 compared to the 3D case, because the fast axial expan-
sion results in an almost sudden (w, 1'= 76 us) decrease
of the atomic density, and only a small fraction of the
interaction energy is converted into radial velocity.

In the second set of experiments, we have studied inter-
ference of independent quasi-2D BECs. Between two and
eight clouds were released from the 2.7 um period lattice
and allowed to expand and overlap [32]. The resulting
interference patterns were recorded by absorption imaging
along the radial direction y. Because of the finite imaging
resolution we observe only the first harmonic of the inter-
ference pattern with period ht/(md;). Each image is thus
the incoherent sum of the pairwise interferences of nearest-
neighbor condensates [24].

Interference of equally spaced, independent BECs pro-
duces straight interference fringes [Fig. 2(a)] as long as
each BEC has a spatially uniform phase [24,33]. The main
result of this Letter is the observation of topologically
different patterns, which reveal the presence of phase
defects in quasi-2D condensates. Striking examples are
“zipper” patterns [Fig. 2(b)], where the fringe phase
changes abruptly by 7 across a dislocation line parallel
to z. On both sides of the dislocation, the fringe contrast is
as high as in Fig. 2(a). We also observe ‘““comb’ patterns
[Fig. 2(c)], which show a dislocation with high fringe

FIG. 2. Phase defects in quasi-2D condensates. Interference of
four (a)—(c) and seven (d) independent BECs is observed 12 ms
after release from the 2.7 wm period lattice. Dislocation lines in
the interference patterns (b)—(d) reveal the presence of phase
defects in quasi-2D condensates.

190403-2



PRL 95, 190403 (2005)

PHYSICAL REVIEW LETTERS

week ending
4 NOVEMBER 2005

contrast on one side of the line, and vanishing on the other.
Finally, we sometimes see ‘‘braid” structures with two
dislocation lines [Fig. 2(d)]. Single dislocations (zippers
and combs) are clearly visible in about 15% of 200 experi-
ments with four interfering clouds [34]. To verify that the
occurrence of defects is an equilibrium property of the
system, we have checked that dislocations are still ob-
served when holding the clouds in the lattice for 500 ms
after ramping down the gradient b'.

The simplest phase configuration which can produce a
sharp dislocation line is a single vortex in one of the
condensates [see also [35—-39]]. In the case of two inter-
fering BECs, one can show that a centered vortex always
leads to a zipper pattern [see a simulation of the expected
pattern in Fig. 3(a)]. The zipper is indeed the only type of
dislocation we clearly observe with two clouds. When
more than two BECs interfere, the presence of a single vor-
tex can result both in a zipper and in a comb pattern, de-
pending on the phases of the other condensates. In Fig. 3(b)
we show a numerical simulation with four BECs leading to
a comb. Increasing the number of interfering BECs enhan-
ces the probability that some of them contain defects [40],
but the interpretation of images also becomes increasingly
difficult. Further, for a large number of clouds, a single
defect will not produce a clear dislocation line in the first
harmonic of the interference pattern, because it affects only
the interference with the two neighboring BECs. Already
with four clouds, only half of 100 simulations with a vortex
show clear zipper- or comb-type dislocations. The other
half shows weaker dislocations which are not easily dis-
tinguishable from straight interference fringes.

Despite the agreement between simulations involving a
vortex and the observed patterns, we point out that it is in
general not possible to unambiguously deduce the under-
lying phase configuration from an interference image. For
example, a dislocation line could also come from a dark
soliton, where the phase of one of the BECs changes by 7
across a line parallel to the imaging axis. In future experi-
ments simultaneous imaging along a second radial direc-
tion could allow us to discriminate between different
possible phase structures leading to the observed interfer-

ence patterns.

FIG. 3. Examples of numerical simulations of two (a) and four
(b) interfering condensates. In both cases one randomly chosen
BEC has a phase factor e’¢ corresponding to a centered vortex,
and the others have randomly chosen uniform phases. For
simplicity, we model the clouds as Gaussian wave packets and
neglect interactions during the expansion. The images are con-
volved with a Gaussian of 4 wm rms width to simulate the finite
imaging resolution.

2) b)
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So far we could not observe a clear signature of vortices
in images of single condensates taken along the axial
direction z. We suspect that this is difficult because of
the expansion properties of a 2D gas. Rotating 3D BECs,
in which vortices are readily detected after TOF [41],
expand mostly radially, while our clouds expand mostly
axially. Therefore, any small misalignment with the imag-
ing axis will significantly reduce the contrast. Interfero-
metric detection along a radial direction offers a funda-
mentally superior signal, because a localized defect affects
the appearance of the whole image.

It is important to assess the temperature of the clouds in
which the observed phase defects appear. Precise ther-
mometry at the end of the experimental cycle is difficult,
because the thermal cloud is very dilute. However, we can
estimate lower and upper bounds for the temperature.
During the 500 ms selective evaporation routine, the clouds
are heated due to three-body recombination, and the only
constant source of cooling is the finite lattice depth; atoms
with an energy larger than V, are accelerated away by the
magnetic field gradient [Fig. 1(b)]. Assuming the largest
realistic evaporation parameter 1 = V,,/(kT) = 10, we get
a lower bound for the temperature 7,;, = 250 nK. To get
an upper bound we note that at the beginning of the
experiment the condensed fraction is certainly above
50%. During the experimental cycle the number of con-
densed atoms in the remaining sites drops by a factor of
=~7?. This means that, even if we neglect losses in the total
atom number, the final condensed fraction cannot be less
than 25%. Using the measured number of condensed atoms
and integrating the Bose distribution over the density of
states in the lattice, we get T, = 500 nK. Since the
number of thermal atoms is different at T, and T .,
the two bounds correspond to different condensation tem-
peratures 7., and the estimated temperature range is more
clearly expressed as 0.7 = T/T. = 0.9. In this temperature
range kT = hw 5, so the thermal clouds are not fully in the
2D regime.

The fact that the clouds are close to T, is probably
essential for the understanding of our observations, and a
systematic temperature study will be the subject of future
work. The probability for a thermal excitation of the sys-
tem into a vortex state is « ¢ /¥T where F = E — TS is
the free energy associated with the excitation, E the energy,
and S the entropy. Here we estimate the conditions for
F/kT to be of order unity. For a vortex in the center of the
condensate, E ~ N[(hw | )*>/u]In(R/€) [37], where N is
the BEC atom number, R the size of the condensate, and
& =h/2mu the size of the vortex core. Equivalently,
E/(kT) ~ (1/2)nyA*In(R/&), where n, is the peak 2D
density of the BEC and A is the thermal wavelength
h/27mkT. The number of distinguishable positions for
a straight vortex of size £ in a region of size R is ~R?/ &2,
and the associated entropy is S/k ~21In(R/£). In this
estimate F/kT « (nyA> — 4) vanishes for nyA> = 4. In
our experiment nyA%> ~ 10-20 is a few times higher than
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this value. However, already this crude agreement suggests
that the thermal excitation of vortices might be possible in
our system.

Thermal excitation of a tightly bound vortex-antivortex
pair [17] is more likely than that of a single vortex. In that
case the entropy is comparable and the energy is typically
lower by the logarithmic factor In(R/§), in our case ~4.
These pairs are difficult to detect with our interfero-
metric scheme since they create only small phase slips in
the fringe pattern. However, they can play a significant
role by screening the velocity field of a single vortex,
thus lowering its energy and making its appearance more
likely [1].

The fact that In(R/£) is not large compared to 1 under-
lines the mesoscopic nature of our system. In a homoge-
neous 2D system with R — oo, both the energy and the
entropy of a free vortex diverge as In(R), and the two
contributions to the free energy cancel at the KT transition
temperature Txr. Below Tkt only vortex-antivortex pairs
are present, while above Tt a large density of free vortices
appears and suppresses superfluidity. In our case, we ex-
pect this phase transition to be replaced by a gradual
increase of the average number of free vortices with tem-
perature. For F ~ kT, the vortex number can show large
fluctuations and two condensates produced under identical
experimental conditions can have qualitatively different
wave functions.

In conclusion, by selectively addressing individual sites
of a 1D lattice, we have produced both a single and several
equally spaced quasi-2D BECs. We have characterized the
free expansion of a single BEC, and have interferometri-
cally observed clear evidence for the presence of phase
defects in about 10% of 800 condensates. While our ob-
servations can be explained by the presence of thermally
excited vortices in the system, this does not exclude other
scenarios and we hope that our experiments will stimulate
further theoretical work.
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