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A new family of graphs, entangled networks, with optimal properties in many respects, is introduced.
By definition, their topology is such that it optimizes synchronizability for many dynamical processes.
These networks are shown to have an extremely homogeneous structure: degree, node distance, betwe-
enness, and loop distributions are all very narrow. Also, they are characterized by a very interwoven
(entangled) structure with short average distances, large loops, and no well-defined community structure.
This family of nets exhibits an excellent performance with respect to other flow properties such as
robustness against errors and attacks, minimal first-passage time of random walks, efficient communi-
cation, etc. These remarkable features convert entangled networks in a useful concept, optimal or almost
optimal in many senses, and with plenty of potential applications in computer science or neuroscience.
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The ubiquitous presence of networks in nature and social
sciences is one of the main findings in the study of complex
systems. The topology of such networks has been profusely
studied [1] and some basic architectures have been discov-
ered. The scale-free one, characterized by a power-law
connectivity distribution, is probably the most widely
studied and celebrated, while other examples are small-
world, hierarchical, Apollonian, static networks, etc. [1].
Right after the first topological studies, the interest shifted
to the analysis of functional or dynamical aspects of
processes occurring on networks, the evolution of the net-
work topology, and the interplay between these last two
dynamical features. Indeed, this ‘“‘network perspective”
has become a new paradigmatic way to look at complex
systems. One particular issue that has attracted much in-
terest because of its conceptual relevance and practical
implications is the study of the synchronizability of indi-
vidual dynamical processes occurring at the vertices of a
given network. How does synchronizability depend upon
network topology? This problem is much more general
than it seems at first sight, as it is directly related to the
question of how difficult it is to transmit information across
the net or how difficult is for the sites to “talk” to each
other. For example, a recently addressed important task is
to determine the most efficient topology for communica-
tion networks both with and without traffic congestion [2].
Other problems such as the minimization of first-passage
times of random walkers on networks, the optimal topol-
ogy in social networks to reach consensus, or the perform-
ance optimization of Hopfield neural networks [3,4] are
also similar in essence. Hence, the issue of synchroniz-
ability is linked to many specific problems in such different
disciplines as computer science, biology, sociology, etc.
[2,5]. Some aspects of these problems have been already
tackled; a key contribution is due to Barahona and Pecora
[5] who established a criterion based on spectral tech-
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niques to determine the stability of synchronized states
on networks.

The criterion is as follows. Consider a dynamical pro-
cess X; = F(x;) — o) ;L;;H(x;), where x; with i€
1,2,..., N are dynamical variables, F and H are evolution
and coupling functions, respectively, o is a constant, and
L;; is the Laplacian matrix, defined by L;; = k; (the con-
nectivity degree of node i), L;; = —1 if nodes i and j are
connected, and L;; = 0 otherwise. A standard linear stabil-
ity analysis can be performed by (i) expanding around a
synchronized state x; = x, = ... = xy = x* with x* solu-
tion of x* = F(x*), (ii) diagonalizing L to find its N eigen-
values 0= A; <Ay =...= Ay, and (iii)) writing
equations for the normal modes y; of perturbations y;, =
[F'(x*) — o A;H'(x*)]y; which have all the same form but
different effective coupling a = oA;. Barahona and
Pecora observed that the maximum Lyapunov exponent
is in general negative only within a bounded interval
[a4, ag], and a decreasing (increasing) function below
(above) (see Fig. 1 in Ref. [5]). Requiring all effective
couplings to lie within such aninterval, oy < oA, = ... =
oAy < ap, it is straightforward to conclude that a syn-
chronized state is linearly stable on a network if and only if
An/Ay < ag/ay. Notice that the left hand side depends
only on the network topology while the right hand side
depends exclusively on the dynamics (through F and G,
and x*). Moreover, the interval in which the synchronized
state is stable is larger for smaller eigenratios Ay/A,,
whence one concludes that a network exhibits better syn-
chronizability if the ratio Q = Ay/A, is as small as pos-
sible, independently of the dynamics.

This Letter is devoted (i) to build up networks with a
fixed number of nodes N and average connectivity (k),
exhibiting a degree of synchronizability as high as possible
(i.e., minimizing Q), (ii) to explore the topological features
converting them into highly synchronizable networks, and
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(iii) to highlight their connection to networks optimizing
other flow or connectivity properties relevant in neuro-
computing, computer science, or graph theory.

First, we overview how Q behaves in some well-known
topologies. For networks with the small-world property [1]
Q is smaller than for deterministic graphs or purely random
networks [5]. This was attributed to the existence of short
characteristic paths between sites. However, Nishikawa
et al. in a study of other small-world networks concluded
that O decreases as some heterogeneity measures decrease,
even if the average distance increases [6]. Also, Hong et al.
concluded that Q decreases whenever the betweenness
heterogeneity decreases [7]. In order to extend and system-
atize these results and construct optimal synchronizable
networks, and in the absence of a better strategy, we define
a numerical algorithm able to minimize Q and search for
such optimal nets.

Our optimization algorithm is a modified simulated
annealing initialized with a random network with N nodes
and an average connectivity degree (k). At each step the
number of rewiring trials is randomly extracted from an
exponential distribution. Attempted rewirings are
(i) rejected if the updated network is disconnected,
and otherwise (ii) accepted if 6Q = Qfna — Oinitial < 0,
or (iii) accepted with probability [8] p = min(l,[1—
(1 — ¢)6Q/T]/1=9) (where T is a temperature-like pa-
rameter) if 6Q =0. In the ¢g— 1 limit the usual
Metropolis algorithm is recovered, while we choose g =
—3 as it gives the fastest convergence (though results do
not depend on this, as already verified in Ref. [8]). The first
N rewirings are performed at 7 = oo, and they are used to
calculate a new T such that the largest 6Q among the first
N ones would be accepted with large probability; in par-
ticular, we take T = (1 — ¢)(6Q)max- T is kept fixed for
100N rewiring trials or 10N accepted ones, whichever
occurs first. Then, T is decreased by 10% and the process
iterated until there is no change during 5 successive tem-
perature steps, assuming that a (relative) minimum of Q
has been found. Most of these details can be changed
without affecting significatively the final results, while
the main drawback of the algorithm is that the calculation
of eigenvalues is slow.

The network found by different runs of the algorithm is
unique (in most of the cases) as long as N is small enough
(N = 30), while they are slightly different if N is larger
(N = 2000 is the larger size we optimized). This indicates
that the eigenvalue-ratio absolute minimum is not always
found, and that the evolving network can remain trapped in
some ‘‘metastable” state. Nevertheless, the final values of
Q are very similar from run to run as shown in Fig. 1. This
fact makes us confident that a reasonably good and robust
approximation of the optimal topology is obtained in gen-
eral, though, strictly speaking, we cannot guarantee that the
optimal solution has been actually found. To gain some
insight into the topological traits favoring a small Q, we
measure some quantities during the evolution and plot
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FIG. 1 (color online). Eigenvalue ratio Q as a function of the
number of algorithmic iterations. Starting from different initial
conditions, with N = 50, and (k) = 4, the algorithm converges
to networks, as the depicted one (b), with very similar values

of Q.

them versus the changing eigenratio. It turns out (as shown
in Fig. 2) that there is a strong correlation between the
tendency of Q to decrease and an increase in the homoge-
neity (lowering variances) of the degree, average-distance,
and betweenness distributions. In a nutshell, the more
synchronizable the network the more homogeneous it is.
Also, the average distance and betweenness tend to dimin-
ish with @, though these quantities are much less sensitive
than their corresponding standard deviations (Fig. 2). The
emerging narrow betweenness distribution is in sharp con-
trast with that of networks with a strong community struc-
ture [9]. Indeed, a well-known method to detect com-
munities consists in removing progressively links with
the largest betweenness [9]. The method leads to sound
results whenever the betweenness is broadly distributed.
Hence, well-defined communities do not exist in the
emerging optimal net.

Further inspection of these networks reveals another
significant trait: the absence of short loops. This can be
quantified by the girth (length of the shortest loop) or more
accurately by the average length, (£), of the shortest loop
passing through each node. In general, the clustering co-
efficient vanishes, as loops are larger than triangles.
Indeed, for small values of N and k, it is possible to identify
the resulting optimized networks, as they have been
studied in the mathematical literature: some of them are
cage graphs. Let us recall that a (k, g)-cage graph is a
k-regular graph (i.e., with a delta-peaked connectivity
distribution) of girth g having the minimum possible num-
ber of nodes. For k = 3 and N = 10, 14, and 24, respec-
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FIG. 2 (color online). Relation between the ratio Q and
(i) node-connectivity standard deviation, (ii) betweenness stan-
dard deviation, (iii) average node distance, and (iv) average
betweenness. The subscript ‘“‘norm” stands for normalization
with respect to the respective mean-values, centering all the
measured quantities around 1.
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tively, the optimal nets found by the algorithm are cage-
graphs with girth 5, 6, and 7 (called Petersen-Heawood-
McGee graphs), respectively, (see Fig. 3 and Ref. [10]). For
other values of N cage graphs do not exist but, in all cases,
networks with very narrow shortest-loop distributions,
with large mean values, are the optimal ones.

In general, we call the emerging structures entangled
networks: all sites are very much alike (superhomogeneity)
and the links form a very intricate or interwoven structure
(no community structure, poor modularity, and large short-
est loops). Every single site is close to any other one (short
average distance) owing not to the existence of intermedi-
ate highly connected hubs, as in scale-free nets [1], but as
the result of a very ““democratic” or entangled structure in
which properties such as site-to-site distance, betweenness,
and minimum-loop size are very homogeneously distrib-
uted (see Figs. 1 and 3).

We have tried to use our (so far, partial) understanding of
the entangled topology to generate them more efficiently.
For example, the constraint of homogeneity in the degree
distribution can easily be implemented by starting up the
simulation with regular graphs (or almost regular graphs)
and performing changes respecting such a property (by
randomly selecting pairs of links and exchanging their
endpoints). A much faster convergence to optimal nets is
obtained in this way. Other topological constraints are not
so easy to implement. We have performed simulations
using target functions different from Q in the optimization
algorithm. Functions such as the average distance, average
betweenness, or homogeneity measures (such as the dis-
tance variance or the betweenness variance), or {(£) are not
sufficient: they need to be optimized simultaneously, in
some proper way, to obtain reasonable outputs. We have
tried different combinations of these quantities. The best
convergence and results are obtained for the following
combination of the betweenness, b, the betweenness vari-
ance, Ab and (€): U = {[(Ab)*> + (b)*]/N} — (€). The op-
timization of U is much faster than the minimization of the
eigenratio as U is faster to compute than Q. For small
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FIG. 3 (color online). Cage graphs for k =3 and (a) g =5
(Petersen) and (b) g = 7 (McGee). (c) Percolation threshold
(main) and average first-passage time (inset) as a function of
the eigenratio Q, as obtained during the optimization of a net-
work with 500 nodes and (k) = 3. The initial network corre-
sponds to a 3-regular graph with N = 500.

networks the final result is as good as the one of the original
method but, unfortunately, when N increases results wor-
sen, though the computational time is always relatively
small. This failure means that a full topological under-
standing of (large) entangled networks has not been
reached yet.

In order to put our findings into context, we discuss some
connections with known concepts in graph theory. General
considerations show that Ay € [k, 2k] for regular graphs
[11,12]. As the variability of Ay is very limited, optimizing
Q is almost equivalent in most cases to maximizing A,
(also called spectral gap), as we have verified numerically.
It is also known that for any family of regular graphs, G,,
(m is the family index), in which the size N goes to infinity
for large m, the inequality A, = k — 2+/k — 1 holds
asymptotically, providing an upper bound for the spectral
gap. Finally, it can be shown that for any family G,, in
which the girth goes to infinity for large m, almost all
eigenvalues are asymptotically greater or equal to k —
2ﬂk — 1), meaning that the optimal gap value is typically
obtained whenever the girth diverges for large N [11,12].
These results are in accordance with our observation of
large girths and large (€) for entangled networks (even if
they are not at the large-N limit). Another link with graph
theory is provided by the concept of expanders. These are
highly connected sparse graphs, with applications which
include the design of superefficient communication net-
works and derandomization of random algorithms among
many others [12,13], and are defined as follows [11,12].
Given a subset S of nodes in a graph G, its “edge bound-
ary’ is the set of links between nodes in S and nodes in its
complement. The “expansion parameter’’ h of a graph G is
the minimum ratio of the edge boundary of a set and the set
itself. A sequence of regular graphs G,, is a family of
expanders if its size N diverges for large m and / is always
larger than a given positive constant. This means that the
boundary of any subset is always a nonvanishing fraction
of the subset itself. Note that a large value of / corresponds
to a very intricate (entangled) network, where it is not
possible to isolate subsets with a small boundary (or, in
other words, where communities are poorly defined). Also,
the expansion property is strictly related to the spectral gap
[12]: A,/2 = h(G) = /2kA,, meaning that (families of)
entangled networks are expanders. Ramanujan graphs [12]
are defined as k-regular graphs of size N with A, = k —
2+/k — 1. Hence, these graphs are optimal expanders [12].
A family of entangled networks, will typically be a
Ramanujan one (as A, tends to be maximized) and, there-
fore, a (close to optimal) family of expanders. The explicit
construction of expanders and Ramanujan graphs is a
currently active field in graph theory [12,13], and it could
serve as a starting point for explicit entangled-network
design.

Some properties of entangled networks as related to
other optimization or flow problems follow: (i) In a recent
paper [14], the optimization of network robustness against
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random and/or intentional removal of nodes has been
studied. It was concluded that for generalized random
graphs in the limit N — oo the most robust topology (max-
imizing the percolation threshold) is characterized by a
degree distribution with no more than 3 distinct node
connectivities, i.e., with a rather homogeneous degree-
distribution. To study the possible connection with our
superhomogeneous entangled networks, let us recall that
the initial topology we have considered (i.e., k-regular
graphs) is already the optimal solution for robustness/opti-
mization against errors and attacks in random networks
[14]. A natural question to ask is whether further Q opti-
mization has some effect on the network robustness. The
answer is yes, as shown in Fig. 3 where the percolation
threshold for random or intentional attacks (which coincide
for regular graphs), f., is plotted versus Q for a particular
Q-optimization run. This further improvement of the ro-
bustness is possible because entangled networks include
correlations, absent in random graphs [14]. This tendency
is maintained for increasing N, confirming that entangled
networks are also extremely efficient from the robustness
point of view (this remains true for reliability against link
removal [15]). (ii) The problem of optimal topologies for a
local search with congestion has been tackled recently [2],
with the conclusion that when the density of information
packets traveling through a network is above a given
threshold, the optimal topology is a highly homogeneous
one, where all the nodes have essentially the same degree,
betweenness, etc. [2]. Again, we encounter superhomoge-
neity, revealing that entangled networks are also optimal
for packet flow and local searches with congestion. (iii) A
typical measure of the network performance for flow prop-
erties is the average first-passage time, 7, of random walks.
It is defined as the average time it takes for a random
walker to arrive for the first time to a given node from
another one. For a k-regular graph, 7 can be expressed in
terms of the Laplacian eigenvalues as 7 « 3 A, where
the sum runs over all nonzero eigenvalues [16]. The largest
contribution comes from 1/A,; therefore minimizing Q
guarantees a small 7 (see inset in Fig. 3), providing more
evidence that entangled nets exhibit a very good perform-
ance for flow problems. (iv) Recently Kim concluded that
neural networks with a lower clustering coefficient exhibit
much better performance than others [4]. Entangled nets
have a very low clustering coefficient as only large loops
exist and, therefore, they are natural and excellent candi-
dates to have a good performance and large capacity.

All these features suggest that entangled networks, de-
fined here as networks which optimize synchronizability,
are also extremely good with respect to many highly
desirable properties in networks. This allows us to state
the following conjecture: Given N and an average number
of links per site k, there exists a network topology (en-
tangled nets) with many optimal (or almost-optimal) fea-

tures, characterized by homogeneous degree, betweenness,
and distance distributions, large girths, large average short-
est loops, no community structure, and small diameters. A
more precise topological characterization of entangled
graphs, as well as the definition of an algorithmic proce-
dure to build them up (similar to those existing for ex-
panders and Ramanujan graphs), remain open and
challenging problems with a huge amount of potential
applications for communication and technological net-
works. It seems that these networks do not abound in the
real world; this could be due to the fact that optimal top-
ologies are not easily reachable within growing network
processes. Identifying examples of these nets and con-
structing evolution-reachable optimal networks are funda-
mental tasks to further gauge the relevance of this topology
in nature.
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