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In a generic spin-polarized Fermi liquid, the masses of spin-up and spin-down electrons are expected to
be different and to depend on the degree of polarization. This expectation is not confirmed by the
experiments on two-dimensional heterostructures. We consider a model of an N-fold degenerate electron
gas. It is shown that in the large-N limit, the mass is enhanced via a polaronic mechanism of emission or
absorption of virtual plasmons. As plasmons are classical collective excitations, the resulting mass does
not depend on N, and thus on polarization, to the leading order in 1/N. We evaluate the 1/N corrections

and show that they are small even for N = 2.
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The observation of an apparent metal-insulator transi-
tion in high-mobility Si metal-oxide-semiconductor field-
effect transistors (MOSFET’s) [1] challenged the scaling
theory of localization [2], which predicts that a two-
dimensional (2D) system undergoes only a continuous
crossover between weak and strong localization regimes.
Although there has been substantial progress in the under-
standing of transport and thermodynamic properties of
MOSFET’s and other heterostructures [3,4], the origin of
the observed phenomena is still a subject of discussion.
Although a conventional (dirty) Fermi-liquid (FL) theory
[5,6] can account for many observed effects at least quali-
tatively and, in some cases, quantitatively, there is also a
number of non-FL scenarios for the anomalous metallic
state [7,8]. On the experimental side, the main argument
for the FL nature of the metallic state is the observation of
quite conventional Shubnikov—de Haas (ShdH) oscilla-
tions [3,4], which implies an existence of well-defined
quasiparticles, albeit with the renormalized -effective
mass m* and spin susceptibility y;. The ShdH and mag-
netoresistance experiments show that at low densities both
m* and y; are significantly enhanced compared to their
band values [4] and, according to some studies [9,10], even
diverge at the resistive transition point.

Although no drastically non-FL features of the metallic
state have been found in ShdH measurements as of now,
there is one very intriguing observation which does seem to
present a challenge for the FL theory, at least in its con-
ventional formulation. Namely, in all studies when the spin
and orbital degrees of freedom were controlled indepen-
dently by applying a tilted magnetic field, the effective
masses, m; and mj, and Dingle temperatures (impurity
scattering rates), Ty and Tp), of spin-up and spin-down
electrons, were found to be almost the same. Moreover, m*
in MOSFETs [11,12] was found to be independent of the
spin polarization, whereas Tp was shown to depend on the
polarization only weakly. In n GaAs, the effective mass
was found to depend on the parallel magnetic field [13];
however, this behavior was attributed to the coupling be-
tween the in-plane and out-of-plane degrees of freedom

0031-9007/05/95(18)/186801(4)$23.00

186801-1

PACS numbers: 73.21.—b, 71.10.Ay, 71.10.Ca, 71.18.+y

(Stern effect [14]), which is to be expected in systems with
wider quantum wells. Given that the Stern effect is sub-
tracted off, the resulting dependence of m™ on the polar-
ization is likely to be weak.

Why is this strange? Polarization is expected to lead to
two effects: the spin-splitting of the effective mass, i.e.,
m; # mj, and dependences of both m; and m| on the
polarization. The first effect can be understood by consid-
ering a partially spin-polarized FL as a two-component
system. As the densities of the components are different,
the corresponding couplings describing the interactions
between the same and opposite spins are also different;
hence a priori the mass renormalizations should also be
different. That the masses should depend on polarization
can be seen from considering two limiting cases: of zero
and full polarization. At fixed density n, the Fermi energy
is doubled by fully polarizing the 2D system, hence the
ratio of the Coulomb to Fermi energy g = e>\/mn/Ey
differs by a factor of 2 between the cases of zero and full
polarization. The experiment shows that the mass does
depend on the density; however, if g is the only dimen-
sionless parameter that determines the mass renormaliza-
tion, the same effect can be achieved by either varying n or
by varying Ey via polarization at fixed n. Also, different
Fermi velocities should result in different impurity scatter-
ing times for spin-up and spin-down electrons; hence the
Dingle temperatures are also expected to be different.
However, this is not what the experiment shows.

The qualitative arguments given above can be verified in
a number of ways. Back in 1971, Overhauser predicted the
spin-splitting and polarization dependence of m™ within the
RPA approximation for the 3D case [15]. Repeating the
calculation in 2D gives a similar result:

miy/m =1+ (r,/N2m) Inr, ¥ (r,€/242m) Inr,, (1)

where ¢ = (ny —n))/(n; + n)) <1 is the polariza-
tion and r, = me?//7n. In the fully polarized regime
(¢ = 1), the spin-down electrons disappear, whereas the
renormalization of m}“ is by a factor of /2 smaller than for
& = 0. This argument can be generalized for a (partially)
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spin-polarized FL [16], where the Landau interaction func-
tion has three independent components: £, fI, and fI =
£, The Galilean invariance then gives

m/m; =1 —F' — (kg /kp) FT;
m/my =1 = F = (kpy/kp)FY,

where Fy = m [dfcos6f"()/(2m)*, with i, j=11].
Again, in general, m; # m]. In addition, the spin-splitting
and polarization dependence of m™ are also obtained within
the Gutzwiller approximation for the Hubbard model [17]
(in this case, mass splitting disappears at half-filling but the
polarization dependence survives).

Absence of the polarization dependence of the effective
mass suggests that m* is renormalized via the interaction
with some classical degree of freedom, which is not af-
fected by the quantum degeneracy of the electron states. In
this Letter, we show such a mechanism may be provided by
the interaction with (virtual) plasmons which dominate the
mass renormalization beyond the weak-coupling regime.
To this end, we turn to a model of a Coulomb gas with large
degeneracy N, considered previously in Refs. [18,19]. This
model is relevant, first of all, to valley-degenerate systems,
such as the (001) surface of a Si MOSFET, where N = 4
(two valleys and two spin projections). As the valley
degeneracy plays a very important role in the dirty FL
theory [5,6] it is important to elucidate its role for the
properties of a clean FL. However, the 1/N expansion
turns out to be converging reasonably fast even for a non—
valley-degenerate system (N = 2) and, as such, it provides
a simple yet nontrivial way of going beyond the weak-
coupling limit for not too strong Coulomb interactions.

For a 2D N-fold degenerate Coulomb gas, the Fermi
momentum is scaled down by a factor of N~!/2 (since one
has to distribute the same number of electrons among N
isospin flavors), whereas the inverse screening radius (),
proportional to the density of states, is scaled up by a factor
of N. The ratio @ = k/kyr = r,N3?/2 controls the cross-
over between the regimes of weak (¢ <« 1) and strong
(a > 1) screening. For N > 1, both of these regimes are
compatible with the condition r; << 1 which guarantees
that the screening cloud includes many electrons, so that
the mean-field theory is applicable. For & < 1, the screen-
ing radius k! = a~'k;! is larger than the Fermi wave-
length. [This case also includes the usual RPA scheme for
N = 2—see Eq. (1).] The mass renormalization is mostly
due to elastic scattering within the particle-hole continuum
with momentum transfers g ~ k, whereas the interaction
with plasmons is small. In this regime, the mass depends on
total degeneracy (N) and is thus strongly affected by
polarization. Also, as scattering is mostly by small angles,
m* < m. For a > 1, the effective screening radius g, ' =

(2a)~'3k;" is smaller than the Fermi wavelength (but still
larger than the distance between electrons); hence, scatter-
ing is isotropic (s-wave scattering). The particle-hole con-
tinuum contribution to m* is greatly reduced for s-wave

scattering, whereas the interaction with virtual plasmons
now plays a dominant role (Fig. 1). As the plasmon is a
classical collective mode, it is not affected by a change in
N. Consequently, the leading term in the N~! expansion
for m* does not depend on N, whereas the next-to-leading
term happens to be numerically small.

The effective mass is found from the self-energy via the
usual relation (valid for a small renormalization)

y
k—kp,e—0

=1 — <8A2k(8) N BAEk(8)>

d€; d(ie)

where A3 (g) = 24(g) — Z;,(0). It is convenient to sepa-
rate A3 (&) into the static and dynamic parts as

A3 (8) = A3S(e) + ASY(e), )

where the static part for €, = (k* — k%)/2m — 0 is

do d*
AX{(e) = [ 52 55V, ONGuey(e + @)~ Guyig(o)]
m 2
:Wqﬁ d0 cosOV oy, sing/2(0) 3)

with Gy !(e) = ie — €, and
Vy(w) =[g/2me* — T (w)]7". 4)
The dynamic part is

w 2
AP (g) = [;Z_w (;ZT(Z)Z[Vq(‘”) — V,(0]

X [Gk+q(8 + w) - GkFJrq(S)]' (5)

In what follows, we will need the following two forms of
the polarization bubble

()

FIG. 1 (color online). Excitation spectrum for an N-fold de-
generate 2D Coulomb gas in the strong-screening regime
(r;N3/2 > 1). The plasmon dispersion crosses over from the
Jq to g* form at g ~ go ~ ri3n1/2 > kp. Processes with mo-
mentum and energy transfers in the shaded oval (¢ ~ gy and w ~
q% /m) dominate the mass enhancement. The plasmon spectrum
merges with the continuum at g = ¢; ~ r;/le/“nl/2 > qp.
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2
%Gk(e)Gkﬁ—q(a + )

de

I, () =N/E
_ {(mN/Zw')(l — |wl/4J0* + v3qg?) for g < kp

2ne, /(g2 + w?) for g > k.

(6)

where vy = yJ4mn/m*N and &, = ¢*/2m.

In the weak-screening regime, A% (e) [Eq. (2)] gives
the main contribution to m*. To logarithmic accuracy,
m*/m =1+ (r,/N/2m) In(r,N>?) + O(r,) in this re-
gime. [For N =2 and ¢ =0, this reduces back to
Eq. (1).] In this regime, the plasmon contribution to m*
is a subleading, O(r,) term.

Now we turn to the strong-screening regime. The static
screened potential in Eq. (3) is evaluated for g =
2kpsinf/2 =< 2kp. In this range, V,(0) = 27e?/(q + )
is of the same form as in the weak-screening regime but
now V,(0) depends on ¢ only weakly because g < k.
Consequently, the angular averaging in Eq. (3) renders
the static contribution to m* small: (m*/m — 1)% =
8/3mNa. Using the large-g form of II in Eq. (6), one
obtains V,(0) = 2me’q?/(q* + q}) for g > kp, where
go = )Pk > kg is the inverse screening radius in
this regime [19]. The main contribution to m* comes
from the region of large ¢ and w in Eq. (5), i.e., from the
plasmon region. In the strong-screening regime, the plas-

mon dispersion is given by w, = ,/e2 + 2me?ng/m. The
crossover between the /g and g* behaviors occurs at g ~
qo- The plasmon runs into the continuum at g ~ q; =
kp(a/2)'/? > ¢, (Fig. 1). Most importantly, being the
classical collective mode, the plasmon is not affected
by a change in N. The mass renormalization can be esti-
mated as follows. Typical momenta and energy transfers
are of the order of g, and e,, respectively; thus
V,(g4) ~ €*/qo, and G ~ @~ ' ~ ¢_!. Combining these
estimates together, one finds that (m*/m — 1)%" ~
[d*q [doV,G* ~ #¥3, which is larger than the static
contribution by a’/3 > 1. To perform an actual calcula-

tion, we notice that the plasmon contribution from the
region of large ¢ to the effective mass can be written as

m*m =1+~ fw de,Res Vy(w) omios (D
7 Jo (iw — &,) ’

where only the poles of V,(w) were taken into account, and

where we have used the expansion e€yiq = €+

vpqcosd(l + €, /2Ep) + €,. Substituting the large-g

form of II [Eq. (6)] into Vq(a)) in Eq. (7), one arrives at

the result of Ref. [19] for the leading 1/N term in m*

m'/m = 1+ 23 3)

where C = I'(1/3)['(1/6)/60./7 = 0.14.

Corrections to the leading term are obtained by includ-
ing (a) interaction corrections to the bubble [Fig. 2(a)],
(b) vertex correction to the self-energy [Fig. 2(b)], and
(c) corrections to the polarization bubble from the
small-¢ region. Estimating the diagrams in Figs. 2(a) and
2(b) in the same way as for the leading term, we find that
both (a) and (b) contribute N-independent, r?/ 3 corrections
to Eq. (8). We have verified by an explicit calculation that
these estimates do hold. Next, we consider correction (c)
and show that it gives the next-to-leading term in the 1/N
expansion.

The 1/g correction to the large-g form of the bubble
[Eq. (6)] is

4n’m Bw® — €))e;
mN (0? + &)

811, () = ©)

At the plasmon pole (w? = —w3) and for g ~ g, the
relative correction |81, (w)/II,(w)| ~ 1/a*?3; hence,
one can expect the next-to-leading term in the mass to be
of order rg/ 3/ a?3 ~ 1/N. Indeed, a correction to the
bubble (9) shifts the position of the plasmon pole from

w? to w? + A%, where A? = 8w?ne*(3r? + 1)/Nmgr*

and r=4/1+(go/q)’. Substituting this result into
Eq. (7), and evaluating the ¢ integral to log accuracy (the
upper limit is determined by g ~ ¢, corresponding to the
region where the plasmon runs into the continuum), we
obtain m* within the next-to-leading order in 1/N as

1 1
wr 2/3 3/2
m"/m=1+0.14r;"" + N log(rN°/%) + O(rst/z)

(10)

where the last term is the static contribution of the con-
tinuum. We see that the 1/N expansion generates the series
in powers of (r,N3/2)~1,

Now we apply our main result, Eq. (10), to real systems.
[In what follows, we neglect the last term in Eq. (10).] First
of all, due to a small numerical coefficient in the leading
term in Eq. (10), the actual constraint on r being small is
rather soft: a twofold enhancement of the mass occurs only
for r; = 20; hence, smaller values of r, still allow for a
reasonable description within the mean-field theory.
Equation (10) agrees well with the observed dependence
of m*(r,) for S MOSFETs in the range r, = 2-6; for larger
ry, the theoretical value of m™ falls below the experimental
one. In the interval 2 < r, < 6, the 1/N term in Eq. (10) is
not that small: it constitutes 18—26% and 26—32% of the

a)@+2>< b)

FIG. 2. (a) corrections to the bubble; (b) vertex correction to
the self-energy.
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FIG. 3 (color online). Change in the effective mass under full
spin polarization [cf. Eq. (11)], as a function of r,.
Inset: polarization dependence of the effective mass for r, =
2,3,4,5.

leading term for N =4 and N =2, correspondingly.
However, the relative change in m* due to full spin polar-
ization (N — N/2),

Am m*(N/2) — m*(N)
m*(N/2) + m*(N)

X 100%, an

mavg
is small. Am/m,, as a function of r, is shown in Fig. 3 for
N =4 and N = 2. In both cases, these changes are less
than 3%, which is likely to be below the experimental error
in the measured mass. At finite polarization, the result in
Eq. (10) changes to

m’ 1+&  rr N2
log 5
12N [1 + &

} (12)

Notice that although an explicit polarization dependence
does occur in the second term, there is no spin-splitting of
the masses to this order in 1/N. Equation (12) is valid as
long as there are still many spin-down electrons within the
screening radius or, equivalently, 1— &> rz/ 3~
(m*/m — 1). The inset in Fig. 3 shows that the effective
mass remains essentially constant in the whole range of &,
which is in agreement with the experiment [12].

To leading order in 1/N, the renormalization of y* is
entirely due to that in m*, so that g* = y*/m* remains
unrenormalized [19]. We found that this remains true up to
the next-to-leading term in 1/N. This result is in qualitative
agreement with the experiments on Si MOSFETs.
However, recent experiment on AlAs system shows that
the g* factor is affected by lifting the valley degeneracy
[20]. More work is required to attribute this behavior to a
many-body effect.

Now, we comment briefly on the impurity scattering rate
in the large-N limit. In the strong-screening regime, the
screening radius (g, 1) is much shorter than the Fermi

wavelength. Therefore, scattering even on charged impu-
rities is in the s-wave regime. We assume that the main role
is played by impurities within the 2D layer. Because of a
peculiarity of 2D scattering [21], the scale of the scattering
cross section is set by the wavelength (rather than by the
impurity size @ ~ g, ') and depends on a weakly: A ~
kz'/In*(kpa). Consequently, the scattering rate 1/7 =
n;vpA where n; is the concentration of impurities, has
only a weak dependence on the polarization (via kr under
the logarithm). Thus 1/7 (Dingle temperature) for spin-up
and spin-down electrons are close to each other. Notice that
both ShdH and weak-field Hall effect [22] show that 1/7,
while being the same for spin-up and spin-down electrons,
increases strongly with r;. Within our model, this can only
be explained by an increase in the number of scatterers n;
with decreasing electron density—not an improbable sce-
nario for Si MOSFETs.
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