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How to Detect the Fourth-Order Cumulant of Electrical Noise
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It is proposed to measure the current noise generated in a mesoscopic conductor by macroscopic
quantum tunneling (MQT) in a current biased Josephson junction placed in parallel to the conductor. The
theoretical description of this setup takes into account the complete dynamics of detector and noise
source. Explicit results are given for the specific case of current fluctuations in an oxide layer tunnel
junction, and it is shown how the device allows to extract the fourth-order cumulant of the noise from the
MQT data for realistic experimental parameters.
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FIG. 1. Electrical circuit containing a mesoscopic conductor G
in parallel to a JJ with capacitance CJ and coupling energy EJ
biased by an external current Ib. The switching out of the zero
voltage state of the JJ by MQT is detected as a voltage pulse V.
Within the last decade electrical noise has moved into
the focus of research activities on electronic transport in
nanostructures [1], since it provides information on micro-
scopic mechanisms of the transport not available from the
voltage dependence of the average current. Lately, atten-
tion has turned from the noise autocorrelation function to
higher order cumulants of the current fluctuations charac-
terizing non-Gaussian statistics [2,3]. While theoretical
attempts to predict these cumulants for a variety of devices
are quite numerous [3], experimental observation is hard
because of small signals, large bandwidth detection, and
strict filtering demands. A first pioneering measurement by
Reulet et al. [4] of the third cumulant of the current noise
from a tunnel junction has intensified efforts and several
new proposals for experimental setups have been put for-
ward very recently, some of which are based on Josephson
junctions (JJ) as noise detectors. Lindell et al. [5] em-
ployed a Coulomb blockaded JJ to demonstrate that the
conductance of the junction in the Coulomb gap region is
sensitive to the non-Gaussian character of noise applied to
the junction. A modification of this setup was suggested by
Heikkilä et al. [6] to get specific information on the third
cumulant of the noise. Another recent experiment [7] has
observed activated-over-the-barrier jumps of a JJ biased by
a noisy current. The data are consistent with resonant
activation produced by the second cumulant of the noise
at the plasma frequency of the junction. For a measurement
of the full distribution of current fluctuations Tobiska and
Nazarov [8] suggested to use an array of overdamped JJs
acting as a threshold detector for rare current fluctuations
triggering over-the-barrier jumps. Since in the overdamped
limit retrapping spoils the buildup of a detectable voltage,
it was argued by Pekola [9] that an experimentally more
accessible detector would extract the noise characteristics
from modifications of the macroscopic quantum tunneling
(MQT) rate in an underdamped JJ. A consistent theory,
however, is still elusive.

In all experimental setups to measure higher order cu-
mulants realized and proposed so far, heating is one of the
major experimental obstacles [10]. Thus, experiments have
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primarily attempted to establish just the unspecified non-
Gaussian nature of the noise or to measure the third cumu-
lant (skewness). This one is particularly accessible since it
can be discriminated from purely Gaussian noise due to its
asymmetry, e.g., when inverting the current through the
conductor. In contrast, the fourth-order cumulant (sharp-
ness) on the one hand due to heating effects may be
completely hidden behind the second and the third one,
but on the other hand is required to gain an essentially
complete characterization of the distribution of current
fluctuations. In this Letter we propose and analyze a setup,
with the circuit diagram depicted in Fig. 1, which allows us
to detect the fourth-order cumulant of the current noise
generated by a nanoscale conductor. Since this conductor is
placed in parallel to a current biased JJ in the zero voltage
state, no heating occurs prior to the decay of this state by
MQT. However, the MQT rate is modified in a specific way
by the even higher order cumulants characterizing the non-
Gaussian current fluctuations of the conductor.

The complete statistics of current noise generated by a
mesoscopic conductor can be gained from the generating
functional

G��� � e�SG��� �
�
T exp

�
i
e

Z
C
dtI�t���t�

��
;

where I�t� is the current operator and T the time order-
ing operator along the Kadanoff-Baym contour C. Time
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correlation functions of arbitrary order of the current are
determined from functional derivatives of G���; in par-
ticular, the average current

C1�t� � hI�t�i � ie@SG���=@��t�j��0

and the current autocorrelation function

C2�t; t0� � hI�t�I�t0�i � e2@2SG���=@��t�@��t0�j��0:

Higher order functional derivatives give the cumulants
related to non-Gaussian current fluctuations

Cn�t1; . . . ; tn� � ���ie�n@nSG���=@��t1� � � � @��tn�j��0:

We remark that the functional SG��� carries the full fre-
quency dependence of all current cumulants and not just
their time averaged zero frequency values usually studied
in the field of full counting statistics [2].

By way of example let us consider an Ohmic resistor of
resistance R in thermal equilibrium at inverse temperature
�. Then, the functional SG��� � SR��� reads

SR��� � 2�
Z
C
dt
Z
C
dt0��t� t0���t���t0� (1)

where � � h=�4�e2R� and

��t� �
�

2�@��2sinh2��t=@��
: (2)

The quadratic form reflects the Gaussian nature of the
current fluctuations in this case which implies that all
cumulants except for C2 vanish. On the other hand, for
a tunnel junction with many transmission channels,
where each channel has a small transmission coefficient
Ti leading to the dimensionless conductance gT � h=
�4�e2RT� � �

P
iTi, where RT is the tunneling resistance,

one has [11]

ST��� � �4gT
Z
C
dt
Z
C
dt0��t� t0�sin2

�
��t� ���t0�

2

�
:

(3)

Here, the periodicity in � reflects the discreteness of the
transferred charges associated with non-Gaussian current
fluctuations.

To gain information on the noise of the conductor, it may
be placed in parallel to a current biased JJ as depicted in the
circuit diagram of Fig. 1. For a bias current Ib below the
critical current Ic, the JJ is in its zero voltage state and the
bias current flows as a supercurrent entirely through the JJ
branch of the circuit. Consequently, no heating occurs in
the conductor and the total system can easily be kept at low
temperatures, where the decay of the zero voltage state
occurs through MQT. The rate of this process depends with
exponential sensitivity on the current fluctuations of the
conductor so that the JJ acts as a noise detector.

The MQT rate � can be calculated in the standard way
[12,13] from the imaginary part of the free energy F, i.e.,
� � �2=@� ImfFg, where F � ��1=�� ln�Z� is related to
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the partition function Z � Trfe��Hg. In the path integral
representation one has

Z �
Z

D���e�S���;

which is a sum over all imaginary time paths with period
@� of the phase difference � across the JJ weighted by the
dimensionless action S��� � SJJ��� 	 SG��=2�. Here

SJJ��� �
1

@

Z @�

0
d�
�

1

2
’2
rCJ _����2 	U���

�
(4)

is the action of the bare JJ and SG is the generating func-
tional introduced above. In Eq. (4) ’r � @=2e denotes the
reduced flux quantum, CJ is the capacitance of the JJ, and
the tilted washboard potential U��� � �EJ�cos��� � s��,
where EJ is the Josephson energy and s � Ib=Ic. The
factor of 2 in the argument of SG arises from the fact that
the voltage across the conductor equals the voltage VJ �
�@=e�� _�=2� across the JJ.

In the MQT regime the partition function of the isolated
JJ is dominated by the so-called bounce trajectory, an
extremal �S��� � 0 periodic path in the inverted barrier
potential. By approximating a well-barrier segment of
U��� around a well minimum �m by a harmonic	 cubic
potential, V���� � �M�2=2���2�1� ��=��0� with �� �
�� �m, one finds an analytic solution in the limit of
vanishing temperature, i.e., �B��� � ��0=cosh2���=2�.
Here, � is the frequency for small oscillations around
the well bottom,M � ’2

rCJ, and ��0 denotes the exit point
determined from U��m� � U��m 	 ��0�. The correspond-
ing MQT rate reads

�0 � 6
���������������������
6�Vb=@�

q
exp

�
�

36

5

Vb
@�

�

where Vb � �2M�2=27���2
0 is the barrier height.

Following the theory of the effect of an electromagnetic
environment on MQT [12,14], the partition function can
now be calculated for arbitrary coupling between detector
and conductor based on a numerical scheme developed in
Ref. [13]. Analytical progress is made when the noise
generating element has a dimensionless conductance
gT 
 EJ=@� so that the influence of the noise can be
calculated by expanding about the unperturbed bounce
which gives

� � �0e�SG��B=2�: (5)

The correction SG��B=2� is usually dominated by the sec-
ond cumulant C2 (width) and the fourth cumulant C4

(sharpness). Note that this treatment still contains the full
dynamics of detector and noise source since any approxi-
mation relying on a time scale separation, such as, e.g., the
adiabatic limit considered in Ref. [9], is usually not
applicable.

Now, in case of a tunnel junction [15] as noise element
one finds for SG��B=2� � ST��B=2� from (2) and (3)
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FIG. 2. Switching probabilities out of the zero voltage state
(‘‘s curve’’) of a JJ in parallel to a tunnel junction (solid lines)
and to an ohmic resistor (dashed lines) with identical second
cumulant for various pulse lengths of the bias current, from left
to right: 1 ms, 1 
s, 10 ns. Dotted lines display the differences of
the corresponding switching probabilities. Parameters are��������������
EJ=EC

p
� 10, gT � 2, ��s � 0� � 100 GHz.
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ST��B=2� �
gT
4�

Z 1
0
d!!j~��!�j2 (6)

with

~��!� �
Z 1
�1

d�ei�B���=2ei!�:

By expanding the first exponential and performing the
Fourier transform for each power of �B��� separately, the
relevant part ��!� � ~��!� � 2���!� reads

��!� �
�
4

!
sinh��!=��

X1
k�1

�2i��0�
k

k!�2k� 1�!

Yk�1

l�1

�
!2

�2 	 l
2

�
:

(7)

This way, Eq. (6) can be cast into

ST

�
�B
2

�
�

gT
4�3

X1
k;k0�1

��1��3k	k
0�=22k	k

0
Akk0

k!k0!�2k� 1�!�2k0 � 1�!
��k	k

0

0 (8)

with the coefficients

Akk0 �
Z 1

0
dy

y3ey

�ey� 1�2

�Yk�1

l�1

�
y2

4�2	 l
2

���Yk0�1

l�1

�
y2

4�2	 l
2

��
:

Here, Akk0 � Ak0k so that in (8) only terms contribute with
k	 k0 even. This means that all odd cumulants of the
fluctuating current vanish according to a vanishing net
current hI�t�i � 0 through the conductor. Specifically,
one finds

A11 � 6	�3�; A22 � 6	�3� 	
5!	�5�

2�2 	
7!	�7�

16�4 ;

A31 � 24	�3� 	 5
5!	�5�

4�2 	
7!	�7�

16�4 :

The terms in the sum (8) related to a contribution of order
��k	k

0

0 determine the impact of the �k	 k0�th moment of
the current fluctuations of the tunnel junction onto the
MQT process. Since in Eq. (7) the term of order ��k0
contains contributions centered around ! � 0;� . . . ; k�,
the influence of the �k	 k0�th moment results from mode
mixing between fluctuations with frequencies l� and l0�
where l � k; l0 � k0.

In lowest order, k	 k0 � 2, one gains from Eq. (8) the
Gaussian noise contribution providing a correction to the
bare MQT rate

��2�T � �0 exp
�
�

6	�3�gT
�3 ��0�s�

2

�
: (9)

Apparently, this reflects the well-known fact that Gaussian
noise leads to a reduction of the tunneling rate [12].

At order ��4
0 the sum (8) gives three contributions,

namely, k � 1, k0 � 3, and k � 3, k0 � 1 with A13 �
A31, as well as k � 2, k0 � 2 with A22. This leads to
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��4�T � ��2�T exp
�

4gT
�3 �2A31 � A22���0�s�4

�
; (10)

so that the fourth-order cumulant of the current noise
contains both, fluctuations that suppress tunneling (related
to A22) and fluctuations that increase MQT (related to A31).
Since 2A31 � A22 > 0, the total impact of the fourth mo-
ment leads to an enhancement of the MQT rate.

To obtain explicit results, the harmonic	
cubic potential V���� leads for the amplitude of the
bounce to ��0�s� � 3

��������������
1� s2
p

=s. Accordingly, the barrier
height scales with the dimensionless current s as Vb�s� �
�2EJ=3��1� s2�3=2=s2, and the plasma frequency reads
��s� � �

��������������
2EJEC
p

=@��1� s2�1=4 with charging energy
EC � 2e2=C. Experimentally, in the standard procedure
[16] to measure the MQT rate, a bias current pulse of
height Ib and duration t is adiabatically turned on and a
voltage pulse is detected when the JJ switches to its finite
voltage state. This procedure is performed a few thousand
times to built-up switching histograms that determine the
switching probabilities

P�s� � 1� e���s�t:

In Fig. 2 these so-called s curves are shown for various
values of the duration of the current pulse t. The parame-
ters chosen are accessible in realistic experiments.
Apparently, for short pulses when the switching occurs
for values of the bias current close to the critical current
of the JJ, the effect of the non-Gaussian noise fluctuations
is completely suppressed due to a decreasing amplitude
��0�s� of the bounce. However, for longer pulses (or
equivalently, for shorter pulses in the tails towards lower
s values) the fourth-order cumulant leads to a substantial
influence, mostly dominated by a shift to smaller s values
compared to an Ohmic resistor with identical Gaussian
noise contribution. As seen from Eq. (10) this is due to
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FIG. 3. B�x� � � ln���x�=�0�x�� vs x � �1� s2�=s2 (dimen-
sionless bias current s) for a tunnel junction (black) and an
ohmic resistor (gray) with identical second cumulant. Solid lines
display the situation in the absence, dashed lines in the presence,
of additional Gaussian noise in the wiring with R=RT � 0:05.
The inset displays the corresponding slopes dB�x�=dx.
Parameters are the same as in Fig. 2.
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an effective decrease of the barrier height by the non-
Gaussian fluctuations of the tunnel junction. The contrast
in the switching probabilities between MQT in the pres-
ence of purely Gaussian noise and in the presence of a
tunnel junction is larger than 10% for values of the pulse
height around s � 0:73, a consequence of the exponential
sensitivity of the JJ in the MQT range even to weak non-
Gaussian fluctuations.

For the on-chip detection circuit proposed here, the
impact of the fourth-order cumulant on the s curves needs
to be clearly discriminated from effects of purely Gaussian
noise. This is achieved by considering the function

B�x� � � ln���x�=�0�x��

with the variable x � �1� s2�=s2 which allows us to dis-
criminate between weak Gaussian and non-Gaussian noise
due to a qualitatively different scaling behavior with vary-
ing x. Note that also in the standard analysis of escape rates
a scaling property is exploited to determine the junction
parameters EJ and � (and thus the bare rate �0) from the s
dependence of Vb at high temperatures [16]. With this
information at hand, the exponential dependence of the
MQT rate on the environment can be used to probe the
noise in the circuit at low temperatures. Figure 3 illustrates
that for B�x� purely Gaussian noise results essentially in a
straight line, while non-Gaussian noise displays a non-
linear behavior. Even more pronounced are the differences
in the slopes dB�x�=dx, which saturate for larger x values
when only Gaussian noise is present, but strongly decrease
with increasing x in the presence of a nonlinear conductor.
Hence, the derivative dB�x�=dx shows directly the impact
of higher than second order cumulants in the noise fluctua-
tions. Most importantly, this scaling property is robust,
since it holds for any sort of Gaussian or non-Gaussian
noise. Namely, additional Gaussian noise present in the
wiring, incorporated by an additional resistor with resist-
ance R
 RT [cf. Equation (1)], merely shifts dB�x�=dx
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and thus does not spoil the scaling behavior originating
from C4 (see Fig. 3). Finally, by fitting dB�x�=dx with
Eq. (9), even the coefficient 2A31 � A22 related to C4 in
Eq. (10) can be extracted.

The formulation developed above is completely general
and applies to any nanoscale conductor in parallel to a JJ. A
systematic expansion of the action SG��B=2� in powers of
��B=2�n determines the dynamical impact of the nth order
cumulant Cn onto the MQT process. To summarize, we
have proposed a nanoelectrical circuit where a JJ placed in
parallel to an arbitrary conductor acts as detector for non-
Gaussian current noise. Since no net current flows through
the noise source, heating effects are suppressed and one
obtains access to the even order cumulants of the distribu-
tion function which are notoriously difficult to detect. For
experimentally realistic parameters we have explicitly
shown how the fourth-order cumulant of a tunnel junction
can be extracted.
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