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Spin-Induced Forbidden Evanescent States in III-V Semiconductors
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Within the band gap of a semiconductor no electronic propagating states are allowed, but there exist
evanescent states which govern charge transport such as tunneling. In this Letter, we address the issue of
their spin dependence in III-V semiconductors. Taking into account the spin-orbit interaction, we treat the
problem using a k � p 14� 14 Hamiltonian that we numerically compute for GaAs. Our results show that
the removed spin degeneracy in the band gap can lead to giant energy splittings and induces forbidden
zones in k space where evanescent states are suppressed.
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FIG. 1. Schematic band diagram of GaAs near the � point of
the Brillouin zone. We use the notation of the Td group to
describe the valence bands ��7V;�8V�, the first conduction
band (�6C) and the remote bands ��7C;�8C�. The interband
matrix elements of momentum �EP; EPX; E0P� and of the spin-
orbit interaction ��0;�1;�

0� are indicated. The Luttinger-like
parameters �i� in the ��7V;�8V� levels and �ic in the ��7C;�8C�
levels are also given.
According to Bloch theory, free electrons in a perfect
periodic crystal behave like plane waves whose amplitude
modulates with the period of the lattice. When a free
electron reaches a surface or an interface, its wave function
may be obtained by solving the Schrödinger equation at a
given energy E, and by matching the allowed solutions on
both sides of the boundary plane. As it was shown by Heine
[1], the eigenvalues E�k� of the crystal Hamiltonian can be
expressed not only for real k wave vectors, but also for
waves associated with complex k. While real wave vectors
describe propagating electron states, the imaginary part of
k describes evanescent states, i.e., exponentially decaying
wave functions. The dispersion relation E�k� involving
complex wave vectors is called complex band structure
and describes how an electron will tunnel through a finite
region of the crystal when its energy E lies in a band gap.
The concept of complex band structure is particularly
important when electronic properties of solid surfaces or
interfaces are considered [2,3], and to determine tunneling
states in semiconductor heterostructures and superlattices
[4,5], magnetic tunnel junctions [6,7], or molecular elec-
tronic systems [8,9].

Contrary to diamond-type semiconductors like Si or Ge,
zinc-blende-structure semiconductors lack a center of in-
version. The spin-orbit interaction in these latter com-
pounds removes the spin degeneracy of all energy bands
(even in the absence of any external magnetic field) [10–
13]. While the spin splitting of propagating electronic
states is well established, the spin dependence of tunneling
states is less well known. An interesting point was recently
raised by Richard et al., when they showed that no eva-
nescent state associated with a purely imaginary wave
vector can match the ‘‘real’’ conduction band of zinc-
blende materials in the �110� direction [14]. In this
Letter, we show that the removed spin degeneracy in this
class of materials induces forbidden zones in the complex
band structure in a wide range of crystallographic direc-
tions for both conduction and valence states, inside and
outside the fundamental band gap. Moreover, from these
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forbidden zones result giant energy splittings, up to an
order of magnitude larger than the splittings known in
real band structure. These findings have deep consequen-
ces for tunneling transport and a careful mapping of the
complex band structure in the band gap is a prerequisite to
determine the evanescent states which can be sustained
within a zinc-blende-type semiconducting barrier.

We compute complex band structure using a k � p tech-
nique through a 14� 14 Hamiltonian (H14) formalism.
H14 can be computed for a large variety of structures;
here we study GaAs as an example. We start from the k �
p 14� 14 Hamiltonian given in Ref. [15], which takes into
account the valence bands ��7V;�8V�, the first conduction
band (�6C) and the second conduction bands ��7C;�8C�,
schematically represented in Fig. 1 in the vicinity of the �
point. H14 allows us to describe the first conduction band
6-1 © 2005 The American Physical Society
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FIG. 2. Real and complex band structure of GaAs (left) and Si
(right) along the (a),(d) �100�, (b),(e) �111�, and (c),(f ) �110�
directions. For the �100� and �111� directions, a loop-shaped
complex band bridging the band gap connects the valence bands
to the conduction bands. No such evanescent states are found in
the �110� direction for GaAs (c), while they still exist in the case
of Si (f).
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and the valence bands with excellent accuracy over a wide
part (about a fifth) of the first Brillouin zone. The crystal
Hamiltonian H14 results from the substitution of a real
wave vector with a complex wave vector. H14 is no longer
Hermitian and E�k� is only real along certain lines in the
complex plane, the so-called ‘‘real lines’’ which join the
real band structure at real k [1,16]. Because H14 takes into
account both the lack of inversion symmetry and the spin-
orbit interaction, it also removes the spin degeneracy of
each band [15].

Before computing H14 numerically, it is instructive to
consider the �6C conduction band in the small-k approxi-
mation analytically. In that case, the spin splitting �E has
k3 dependence (Dresselhaus term) [10], and the �6C energy
levels can be written as E� � �C �k2 � �E. In that expres-
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, where the

constant � describes the strength of the k-dependent inter-
nal magnetic field (D’yakonov-Perel’ field), which re-
moves the spin degeneracy [12]. Note that �E is
maximum for k along the �110� direction and null for k
along the �100� and �111� directions. For real wave vectors
�E � 0, but �E is not necessarily defined for complex k,
because the Dresselhaus term leads to an odd power of k in
the initially spin degenerate, parabolic dispersion law. For
example, for an imaginary wave vector k in the �110�
direction �E � i�

���
2
p
k3 is an imaginary number. The

imaginary value of �E implies that evanescent states are
quenched in this direction. We emphasize that this
‘‘quenching’’ of the �6C conduction states in the band
gap originates in zinc-blende semiconductors from the
combination of symmetry breaking and spin-orbit interac-
tion, which leads to a nonzero value of �. In contrast, for
diamond-type semiconductors, � � �E � 0 in every crys-
tallographic direction and complex wave vectors associ-
ated with the �6C conduction states are always found in the
band gap.

For the general case of larger k values and other bands
(valence bands and upper conduction bands), no analytical
expression of the energy levels can be written and one must
compute the eigenvalues of H14. To do that, we consider a
surface (or interface) as a discontinuity where k1 and k2 are
the components of the wave vector kk parallel to that
discontinuity. Since the crystal Hamiltonian is invariant
under translations parallel to the surface, only real values
of these components are of interest. We can consider them
as fixed parameters so that the energy is only a function of
the complex vector k? which describes the direction nor-
mal to the surface. To compute the eigenvalues of H14

numerically for GaAs and for k?, along the �100�, �111�,
and �110� directions, the energy origin was taken at the top
of the �8V valence band. The parameters we use in the
calculation, indicated in Fig. 1, are the following: the
energy levels at the � point of the �8V, �7V, �6C, �7C,
18640
and �8C bands are E8V � 0 eV, E7V � �0:341 eV, E6C �
1:519 eV, E7C � 4:488 eV, E8C � 4:659 eV; the charac-
teristic energies related to the interband matrix elements of
momentum (spin-orbit interaction) between the f�8V;�6Cg,
f�8C;�6Cg, and f�8V;�8Cg bands are EP � 22:5 eV, E0P �
10:0 eV, EPX � 15:0 eV (�0 � 0 eV), respectively. The
Luttinger-like parameters in the ��7V;�8V� levels are
�1� � 6:85, �2� � 2:10, �3� � 2:90, and are set to 0 in
the ��7C;�8C� levels (approximating remote bands as flat).
This parameter set gives � � 24 eV �A3, which corre-
sponds to the value used in Ref. [15].

First, we restrict the calculation to the case kk � 0. The
eigenvalues along the �100�, �111�, and �110� directions are
presented in Figs. 2(a)–2(c), where k? is expressed in units
of 2�=a, a being the cubic lattice parameter (a �
0:5653 nm). Real and complex bands are plotted on the
right and left sides of each panel. As expected [15], for real
wave vectors the bands keep their twofold spin degeneracy
in the �100� and �111� directions while the spin degeneracy
is removed along the �110� direction. For imaginary wave
6-2
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FIG. 3 (color online). 3D map of the GaAs complex band
structure in the �111� direction. The vertical axis represents
energy and one horizontal axis represents the real (right side)
and imaginary (left side) parts of k?. k1 � 0 (k1 k �11� 2�) and
k2 (k2 k �1� 10�) is varied from 0 to 0.34 along the second
horizontal axis. The conduction band (�6C) and the light-hole
valence band (�8V) are shown in purple while the heavy-hole
valence band (�8V) and the spin-orbit split valence band (�7V)
are in blue and green. To emphasize the extension of forbidden
zones for evanescent states, the 3D map is oriented so that the
origin is near the back of the plot.
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vectors, the dispersion relations along the �100� and �111�
directions are in agreement with those found in previous
works [17–19], the main feature being a loop-shaped band
that connects the first conduction band and the light-hole
band. This band spans the entire band gap, which means
that evanescent states can be found for all energies within
the band gap. However, in the �110� direction where the
spin degeneracy is removed, no evanescent states are ob-
tained for any band. The numerical evaluation of H14

shows that the suppression of evanescent states is not
limited to the energy region near the edge of �6C, as we
have shown analytically above. In fact, a free-electron
wave propagating along the �110� direction cannot match
any evanescent state in this direction, for all energies
within the band gap.

This quenching of evanescent states originates from the
combination of symmetry breaking in GaAs and spin-orbit
interaction. The lack of a center of inversion in the crystal
leads to a nonzero interaction between the �8C and �6C

bands. This interaction, called E0P in H14, yields odd
powers of k in the dispersion laws (Dresselhaus term for
the �6C band in the small-k approximation), independently
of the strength of the spin-orbit coupling. E0P then gives rise
to possible imaginary contributions to the energy when
complex wave vectors are considered. Because E0P van-
ishes in crystals having a center of inversion, due to sym-
metry consideration, we do not expect any quenching of
evanescent states in Si or Ge, for example. To ensure that
this quenching is a direct consequence of the nonzero value
of E0P, we have computed H14 for Si. The parameters we
used are the following: E8V � 0 eV, E7V � �0:044 eV,
E6C � 4:185 eV, E7C � E8C � 3:410 eV, EP � 25:0 eV,
E0P � 0 eV, EPX � 15:0 eV, �0 � 0 eV, �1� � 4:285,
�2� � 0:339, �3� � 1:446, and �1c � �2c � �3c � 0.
The results we find, plotted in Figs. 2(d)–2(f), permit
direct comparison with the results reported in Ref. [18],
where a tight-binding Hamiltonian had been used. The
excellent quantitative agreement we find justifies our
choice of the H14 Hamiltonian. Moreover, we note that
for Si, complex bands are found in the all three low-index
directions, including �110� [Figs. 2(d)–2(f)], contrary to
GaAs. This fact points at the physical origin of evanescent
state suppression in zinc-blende materials: within our for-
malism, the crucial difference between zinc-blende-
semiconductors and diamondlike semiconductors is that
in the former, the value of E0P (which characterizes the
momentum matrix element between the �8C and �6C

bands) does not vanish. Supporting this picture we also
checked that, if we artificially set E0P � 0 for GaAs to
simulate a center of inversion (while maintaining the other
GaAs parameters unchanged), complex bands are again
found in all directions.

For the general problem of tunneling transmission
through a barrier, the components �k1; k2� of the wave
vector kk parallel to that barrier must be considered. For
18640
GaAs, we have determined the eigenstates of H14 for
different kk values and k? along the �100�, �111�, and
�110� directions. For all kk � 0 wave vectors we consid-
ered, �E � 0 and the complex band structure exhibits
astonishing properties. For example, to focus the discus-
sion on a GaAs barrier grown along the �111� direction, no
complex bands were found for k1 � 0 (k1 k �11� 2�) and
evanescent states are suppressed for all values of k2 (k2 k
�1� 10�) in the range studied here (k2 < 0:34). The band
structure in this range is similar to that shown in Fig. 2(c).
In contrast, if k1 � 0, complex bands always exist within
the real band gap. It is instructive to visualize the complex
band structure in 3D representations. The case k1 � 0 is
illustrated in Fig. 3 where the vertical axis represents
energy (horizontal grid lines indicate E � 0), one horizon-
tal axis represents the real and imaginary parts of k? to the
right and to the left of vertical grid lines, respectively, and
the second horizontal axis represents k2 in the range of 0<
k2 < 0:34 (2�=a units). The conduction band (�6C) and the
light-hole valence band (�8V) are shown in purple while the
heavy-hole valence band (�8V) and the spin-orbit split
valence band (�7V) are in blue and green. To highlight
the structure near the band gap, remote bands were omitted
in this plot. For k2 � 0 near the back of the 3D plot, the
band gap between the real part of the conduction band and
the real part of the light-hole valence band is bridged by a
continuous, loop-shaped complex band. With k2 > 0, the
loop-shaped complex band develops a break near the top of
6-3
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FIG. 4. Top: values of the spin splitting of the �6C conduction
band in the �111� direction as a function of k? for k1 � 0 and
k2 � 0:16. Bottom: real (right panel) and complex (left panel)
band structure, plotted for the same range of k? values.
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the light-hole valence band and a zone appears where both
the real and the complex part of the band structure exhibit a
gap in the same energy range. This means that the real band
gap is also free of complex bands in this region, i.e., this is
a forbidden zone where neither propagating electronic
states nor evanescent states can exist in this crystal direc-
tion. Similar results are obtained in the �110� and �100�
directions when kk � 0. These results show that the spin-
orbit interaction in zinc-blende-type semiconductors has
dramatic consequences on the complex band structure in
all crystallographic directions. This is crucially important
to describe tunneling phenomena: depending on the sur-
face orientation and the wave vector involved, the tunnel-
ing transmission through a III-V semiconductor barrier
may be essentially suppressed.

The loop-shaped complex bands have additional aston-
ishing properties. The loops contain regions of diverging
dispersion @E=@k which, in combination with removed
spin degeneracy, lead to a region in k space where the
energy splitting can reach extremely high values. For
example, the 2D complex band structure corresponding
to the case k2 � 0:16 in Fig. 3 and the associated energy
splitting of the �6C conduction band are shown in Fig. 4.
For Im�k?� � 0:15, near the middle of the band gap, the
energy splitting reaches 0.5 eV: this value is almost 1 order
18640
of magnitude higher than the energy splitting observed for
k? with real values of similar magnitude. As far as we
know, such giant splittings have not been reported so far.
Moreover, the nonzero value of the energy splitting in the
band gap for very small k? is a pure spin splitting, and may
be used to inject 100% spin-polarized carriers through a
�111�-orientated GaAs barrier with a transmission close to
unity. Combining the possibility of quenching tunneling
electron transport in III-V semiconductor barriers and the
possibility of taking advantage of giant spin splittings can
serve as a basis for future spin-injection, spin-filtering, or
other spin-dependent tunneling devices.
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