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Attractor Selection in Chaotic Dynamics
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For different settings of a control parameter, a chaotic system can go from a region with two separate
stable attractors (generalized bistability) to a crisis where a chaotic attractor expands, colliding with an
unstable orbit. In the bistable regime jumps between independent attractors are mediated by external
perturbations; above the crisis, the dynamics includes visits to regions formerly belonging to the unstable
orbits and this appears as random bursts of amplitude jumps. We introduce a control method which
suppresses the jumps in both cases by filtering the specific frequency content of one of the two dynamical
objects. The method is tested both in a model and in a real experiment with a CO2 laser.
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FIG. 1 (color online). (a) Laboratory setup consisting of a CO2

laser with loss modulation, partly due to an external driving and
partly due to a feedback loop including the filter. EOM, electro-
optic modulator; M1, M2, mirrors; D, detector; NF, notch filter;
a, amplifier for the filter signal; R, differential amplifier; B0, bias
voltage and WG, wave generator. (b) Electronic scheme of the
passive filter (NF). The component values for the filter are R1 �
600 �, R2 � 20 k�, L1 � 1:44 mH, L2 � 17 mH, C1 �
19 nF, and C2 � 560 pF.
By tuning a control parameter, a chaotic system can
either display two attractors (generalized bistability) [1–
3] or exhibit an interior crisis [4,5], whereby a chaotic
attractor suddenly expands including the region of an
unstable orbit. In the former case, starting from an assigned
initial condition, the system remains on one attractor, and
only external perturbations can induce jumps between the
two attractors; the relative weight of the two attractors is
given by the size ratio of the two domains of the initial
conditions leading to either one. In the latter case, whatever
the initial condition, the system visits the whole phase
space of the two dynamical objects, even though for differ-
ent amounts of time; any initial condition generates the
trajectory visiting the whole single attractor; however, a
memory of the previously separeted regions remains and
the fractional time � spent on the formerly unstable orbit
results in bursts of anomalous amplitude signal (crisis-
induced intermittency [6]).

In the bistable case [7], we show how a single attractor
selection is performed by a feedback including a frequency
filter, based on the different spectral content of the two
attractors; then we demonstrate that the selection method is
still effective beyond the crisis. In this latter case, the
selection eliminates the anomalous bursts, thus regulariz-
ing the output signal. The method leaves unperturbed the
chaotic features of the selected attractor, thus it should not
be confused with chaos control [8] which stabilizes one of
the unstable periodic orbits within a single attractor.

We apply these general considerations to a periodically
driven CO2 laser [2]. The attractor selection is realized by
adding to the loss modulator of the CO2 laser a feedback
loop including a frequency filter, which modifies the driv-
ing signal, quenching or enhancing some specific fre-
quency components, depending on the feedback sign.

The laboratory setup is shown in Fig. 1.
It consists of a single-mode CO2 laser with an intra-

cavity electro-optic loss modulator (EOM). The cavity
length is L � 1:42 m and the total transmission T is about
05=95(18)=184101(4)$23.00 18410
0.10 for a single pass. The intensity decay rate can be
expressed as

k�t� � kf1� �sin2�B0 � Fmod�t��g (1)

where k � cT=L, c being the speed of light in the vacuum,
� � �1� 2T�=2T, B0 is a bias voltage, and Fmod�t� is the
modulation applied to the EOM.

We consider a sinusoidal modulation Fmod�t� �
A sin�2�ft� where f � 100 kHz is about twice the relaxa-
tion frequency of the laser [2]. The modulation signal is
provided by a waveform generator (WG). The laser is
pumped by a dc discharge current stabilized at 8.00 mA,
while the threshold current is 6.50 mA. The filter NF
1-1 © 2005 The American Physical Society
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[Fig. 1(b)] has a notch frequency given by fnotch �
1=�2�

�����������
L2C2

p
�; its input is the laser intensity and its output

is amplified by a.
Increasing the modulation amplitude A [see Fig. 2(a)],

the system undergoes a sequence of subharmonic bifurca-
tions leading to a small amplitude chaotic attractor. Further
increase of A (above 1.2 V) induces the occurrence of a
regime where bursts of high-amplitude orbits of period
three and period four (P3 and P4) are intercalated with
the small amplitude chaotic attractor [Figs. 2(b) and 2(c)].

Bursting events follow a statistical law typical of Type I
intermittency [9]. Plotting the counts of the interbursting
times �, we obtain experimentally, and confirm numeri-
cally, exponential decay of the burst occurrence versus the
interbursting time, with an experimental mean separation
h�expi � �0:366� 0:001� ms; in the numerical case we
find h�numi � �1:04� 0:05� ms. The quantitative differ-
ence is due to the fact that the numerical noise is much
smaller than the laboratory noise.

The modulated CO2 laser has been initially modeled by
two coupled rate equations, for the laser intensity and the
population inversion [2]. However, for a good agreement
between model and experimental data, one must account
for long time interactions of the resonant molecular tran-
sition with other molecular levels. It is then convenient to
add three further linear equations, using a model of five
differential equations. The rescaled equations for the
modulated laser were reported in Ref. [10]; the new pa-
rameter values that fit the present experimental situation
are k0 � 30, � � 4, B0 � 0:1794, �1 � 10:0643, �2 �
1:0643, P0 � 0:01987, � � 0:05, and z � 10. The thresh-
old for P0 is 0.0164.
FIG. 2 (color online). Experimental data. (a) Stroboscopic bi-
furcation diagram of the unperturbed system as a function of the
modulation amplitude A; the discontinuity around 1.2 V corre-
sponds to the sudden onset of the interior crisis. (b) Time
evolution of the laser output intensity in the bursting regime.
(c) Zoom of (b) corresponding to the dashed box; it provides
evidence of P3 and P4 oscillations.
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We report in Figs. 3(a) and 3(b) the numerical bifurca-
tion diagrams for two different initial conditions.
Figure 3(a) shows the subharmonic cascade corresponding
to the experimental data of Fig. 2; it starts precisely at A �
0:05 with P2 and continues with the chaotic window at
A � 0:065; at A ’ 0:102 the attractor displays a sudden
increase corresponding to a crisis; from there, it merges
with the ‘‘ghost’’ of the unstable P3 and hence yields the
bursts observed in Fig. 2. Figure 3(b) displays a P3 attrac-
tor born from a saddle-node bifurcation at A � 0:055 and
disappearing by boundary crisis [4] at A � 0:07, for an
initial condition x1�0� � 0:43	 10�1. Figure 3(c) shows
the stability regimes of P3 for a set of different initial
conditions; the fact that P3 is born and dies at different
control parameters is a demonstration of (i) the nestedness
of the basin boundaries between the P3 and the subhar-
monic attractors and (ii) the fragility of the P3 attractor
with respect to the subharmonic one.

The bistable interval around A � 0:06 is characterized
by two different frequency contents of the P3 and subhar-
monic attractor; based on this difference we adjust the
feedback filter in order to enhance or depress the f=3
component. This way, we select either one of the two
attractors of the bistable regime, as shown in Figs. 4(a)
and 4(b).

Above A � 0:1 an interior crisis expands the chaotic
attractor into the region of the unstable P3, thus giving
rise to a new attractor region which can be still discrimi-
nated by its frequency content. If we want to quench this
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FIG. 3. (a) and (b) Numerical bifurcation diagrams obtained
starting from two different initial conditions. (a) x1�0� �
0:43	 10�3 (b) x1�0� � 0:43	 10�1. The bistable range is A 2
�0:05; 0:07� while bursting regime is occurring after A � 0:1.
(c) Parameter regions of stable existence of P3 for different
initial conditions.
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FIG. 5 (color online). Experimental frequency spectra of the
laser intensity (a) in the busrting regime, (b) with negative
feedback, showing depression at f=3 and f=4 components,
(c) with positive feedback showing enhancement at f=3 and
f=4 components. Notice the different vertical scales; indeed the
amount of f=4 in (c) is 40 times larger than in (b). On the right,
corresponding experimental attractors, reconstructed by an em-
bedding technique, showing, respectively, (d) coexistence of
both attractors, (e) elimination of the large attractor,
(f) enhancement of the large attractor.
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FIG. 4 (color online). (a) Numerical power spectrum corre-
sponding to the attractor at A � 0:06 and to the initial condi-
tion in Fig. 3(b). (b) Selection of the other attractor after the
control. (c) Numerical simulation of the time dependence of the
laser intensity x1 for A � 0:105 (beyond crisis). The control is
applied at t � 7 ms. The upper trace represents the control
signal for G � 2:1%, on the same amplitude scale as x1.
Similar results can be obtained by applying the perturbation to
the pump parameter P0.
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region, we send its main frequency components (P3 and
P4) as a negative feedback signal via the frequency filter. If
on the contrary we change the feedback sign, we enhance
the role of this region against the rest of the attractor.

The frequency components corresponding to the sub-
harmonic attractor are slightly affected by the filter (NF)
whose notch frequency is selected at the first subharmonic
f=2, that is, 50 kHz. The filter is ac coupled, so that the low
frequency components, which control the long time dy-
namics, are not affected. The notch filter used in the
experiment was already introduced in Refs. [11,12].

The filter output is amplified and sent to the negative or
positive input of the differential amplifier (R). When the
control is inserted, the modulation Fmod�t� is perturbed by
aVout, where Vout and a are the output of the filter and its
amplification, respectively. We define the coupling
strength G as the ratio aVout=A between the perturbation
and the modulation amplitude A. Figure 4(c) shows the
bursting regime beyond crisis and its suppression when the
perturbation is G ’ 2%.

In Fig. 5 we report the experimental data at A � 1:25 V,
for the uncontrolled dynamics 5(a) and 5(d) and the for the
controlled one, both with negative 5(b) and 5(e) and posi-
tive 5(c) and 5(f) feedback. On the left we plot the fre-
quency spectra and on the right the corresponding
attractors, reconstructed by the embedding technique.
The larger amplitude chaotic attractor is drastically re-
duced in 5(b) and 5(e) giving evidence of burst suppres-
sion; on the contrary, it is enhanced for a positive feedback
in 5(c) and 5(f).
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A quantitative evidence of suppression of the large
amplitude bursts is provided by the fractional time indica-
tor � which is measured by

� �
�
P

k
TBk�

T
; (2)

T being the duration of the recorded time series and
P
kTBk

the total duration of burst events within T.
The bursts are detected by selecting a threshold in order

to distinguish the large amplitude spikes from the small
amplitude chaotic dynamics. The behavior of � from the
noncontrolled to the controlled regime is reported in Fig. 6
as a function of the coupling strength G. The transition
toward complete control (� � 0) is characterized by a
power law with an exponent �1=2,

� / jG�Gcj
�1=2: (3)

Such a behavior, confirmed also by numerical simula-
tions, indicates the presence of a phase transition of type I
intermittency. The estimated value for the exponential
decay of � as a function of G�Gc is in agreement with
the theoretical predictions for this transition [9,13]. A
similar feature has also been reported in the transition to
phase synchronization of homoclinic chaos with periodic
perturbation [14]. Very close to complete control, numeri-
cal and experimental data deviate from the power law.

The perturbation can be applied to other control parame-
ters instead of the cavity losses. For example, it can be
added to the pump parameter P0; in this case, control of
1-3



FIG. 6 (color online). Numerical (left) and experimental
(right) evidence of the power law dependence � on G. The
straight lines have slope �1=2. Modeling this transition as � /
jG�Gcj

�1=2, the critical parameter Gc is estimated from the fit
as Gc � 0:00244 in the numerical case and Gc � 0:0112 in the
experimental case.
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bursting is achieved for a relative perturbation of the order
of G ’ 0:05%.

Epidemic outbreaks offer another example of bursting
phenomena. Recently an epidemic model called SEIR [15]
has been shown to be ruled by the same equations as the
CO2 laser. The SEIR term refers to the population dynam-
ics of individuals distributed over different states, namely,
susceptible (S), exposed (E), infectious (I), and recovered
(R); here the key nonlinearity is the SI product. In laser
dynamics I and S are replaced by the photon number and
population inversion, respectively, and their product pro-
vides the fundamental nonlinearity [16]. Controlling
through the pump modulation is equivalent, in the SEIR
model, to controlling through the birth rate modulation,
whereas controlling through cavity losses corresponds to
modulating the recovery rate, which is in fact not possible
in nature [16].

In summary, we have experimentally demonstrated
that a suitable linear filtering can suppress bursting in
chaotic dynamics systems with occasional amplitude
jumps, once the frequency components of the bursting re-
gimes have been isolated. This control method has a wide
applicability; the analogy with the epidemiological SEIR
model suggests a possible application to epidemic out-
18410
breaks, as an alternative to an adaptive scheme recently
introduced [17].

Work is partly supported by FIRB Contract
No. RBAU01B49F_002.
1-4
[1] F. T. Arecchi and F. Lisi, Phys. Rev. Lett. 49, 94 (1982);
50, 1330 (1983).

[2] F. T. Arecchi, R. Meucci, G. Puccioni, and J. R. Tredicce,
Phys. Rev. Lett. 49, 1217 (1982).

[3] J. M. Saucedo-Solorio et al., J. Opt. Soc. Am. B 20, 490
(2003).

[4] C. Grebogi, E. Ott, and J. Yorke, Phys. Rev. Lett. 48, 1507
(1982).

[5] D. Dangoisse, P. Glorieux, and D. Hennequin, Phys. Rev.
Lett. 57, 2657 (1986).

[6] C. Grebogi, E. Ott, and J. Yorke, Physica (Amsterdam)
7D, 181 (1983).

[7] The different spectral content is crucial for the validity of
the proposed method, which then does not hold in case of
complete mirror symmetry of the two attractors as, e.g., in
the forced Duffing oscillator of Ref. [1].

[8] E. Ott, C. Grebogi, and J. Yorke, Phys. Rev. Lett. 64, 1196
(1990). For a comprehensive review on this subject see
S. Boccaletti, C. Grebogi, Y. C. Lai, H. Mancini, and
D. Maza, Phys. Rep. 329, 103 (2000), and references
therein.

[9] Edward Ott, in Chaos in Dynamical Systems (Cambridge
University Press, Cambridge, England, 1994), pp. 279–
280.

[10] R. Meucci, D. Cinotti, E. Allaria, L. Billings, I. Triandaf,
D. Morgan, and I. B. Schwartz, Physica (Amsterdam)
189D, 70 (2004).

[11] R. A. Tesi, E. H. Abed, R. Genesio, and H. O. Wang,
Automatica 32, 1255 (1996).

[12] R. Meucci, M. Ciofini, and R. Abbate, Phys. Rev. E 53,
R5537 (1996).

[13] P. Manneville and Y. Pomeau, Physica (Amsterdam) 1D,
219 (1980).

[14] S. Boccaletti, E. Allaria, R. Meucci, and F. T. Arecchi,
Phys. Rev. Lett. 89, 194101 (2002).

[15] L. Billings, E. Bollt, D. Morgan, and Ira B. Schwartz, in
Proceedings of the Fourth International Conference on
Dynamical Systems and Differential Equations,
(American Institute for Mathematical Sciences,
Wilmington, NC, USA, 2002), p. 122.

[16] Min-Young Kim, R. Roy, J. L. Aron, T. W. Carr, and Ira B.
Schwartz, Phys. Rev. Lett. 94, 088101 (2005).

[17] I. B. Schwartz, L. Billings, and E. M. Bollt, Phys. Rev. E
70, 046220 (2004).


