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Nonequilibrium Relaxation of an Elastic String in a Random Potential
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We study the nonequilibrium motion of an elastic string in a two dimensional pinning landscape using
Langevin dynamics simulations. The relaxation of a line, initially flat, is characterized by a growing length
L�t� separating the equilibrated short length scales from the flat long distance geometry that keeps a
memory of the initial condition. We show that, in the long time limit, L�t� has a nonalgebraic growth with
a universal distribution function. The distribution function of waiting times is also calculated, and related
to the previous distribution. The barrier distribution is narrow enough to justify arguments based on
scaling of the typical barrier.
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The physics of disordered elastic systems has been the
focus of intense activities both on the theoretical and
experimental sides. Indeed it is relevant in a large number
of experimental situations ranging from periodic systems
such as vortex lattices [1], charge density waves [2], and
Wigner crystals [3] to domain walls in magnetic [4–7] or
ferroelectric [8,9] systems, contact lines [10], and fluid
invasion in porous media [11]. Because of the competition
between disorder and elasticity, glassy properties arise, and
one of the most challenging question is to understand their
consequences on the dynamics of the system [12].

Since the system moves by thermal activation over the
barriers separating metastable states, the steady state re-
sponse to a small external force is a way to probe its glassy
nature. The glassiness leads to divergent barriers and thus
to a slow response known as creep [13,14]. Experiments
[4,6,8,9] as well as microscopic calculations of the re-
sponse [15,16] have confirmed this creep behavior,
although questions remain in low dimensions about the
value of the creep exponent [17]. Much less is known about
the glassy effects in the nonstationary relaxation towards
equilibrium. Understanding such nonstationary physics is
clearly crucial since it gives complementary information
on the barriers and, for experiments, is needed to describe
the many systems that are quenched in the glassy state
(e.g., by changing rapidly the temperature), and then have
to relax. Theoretical attempts to tackle this problem have
been made using mean field and renormalization group
approaches [18–20]. Direct application of these results to
one dimensional domain walls is, however, difficult.
Numerical studies, that would give more direct information
in low dimension, are also difficult since they have to deal
with ultra long time scales dynamics. Simulations have
thus been mostly restricted so far to 2-dimensional random
Ising models or 2-dimensional periodic elastic systems
[21–23]. The relaxation of a directed polymer has been
investigated [24–26] by local Monte Carlo dynamics [27],
but a precise study of the connection between relaxation
and the static glassy properties is still lacking. In this Letter
we thus study the slow nonequilibrium relaxation of an
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elastic string moving in a two dimensional random media.
We prepare the string in a flat configuration and let it relax.
Such a protocol is simple, experimentally accessible
[4,6,7,9], and exhibits the generic features of the out of
equilibrium glassy dynamics. We show that the relaxation
is governed by a characteristic growing length, L�t�, sep-
arating the equilibrated short length scales from the flat
long distance ones that keep a memory of the initial
condition. In the long time limit, L�t� has a nonalgebraic
growth with a universal distribution function. We compute
the distribution of waiting times and thus of barriers. This
latter distribution is found to be narrow enough to justify
the scaling for L�t� based on a typical barrier.

We consider a string described by a single valued func-
tion u�z; t�, measuring its transverse displacement u from
the z axis at time t. The initial condition is flat u�z; t �
0� � 0, and we monitor the relaxation towards equilib-
rium. The string obeys the equation of motion:

�@tu�z; t� � c@2
zu�z; t� � Fp�u; z� � ��z; t� (1)

where � is the friction coefficient and c the elastic con-
stant. The pinning force Fp�u; z� � �@uU�u; z� derives
from the random bond disorder potential U�u; z� and the
thermal noise ��z; t� satisfies h��z; t�i � 0 and h��z; t� �
��z0; t0�i � 2�T��t� t0���z� z0� where h. . .i is the ther-
mal average. The sample to sample fluctuations of the
random potential are given by �U�u; z� �U�u0; z0��2 �
�2��z� z0�R2�u� u0� where the overline denotes an av-
erage over disorder realizations. In the random bond case
the correlator R�u� is short ranged.

To solve (1) numerically we use the method of Ref. [17].
We discretize the string along the z direction, z! j �
0; . . . ; L� 1, keeping uj�t� as a continuous variable. A
second order stochastic Runge-Kutta method is used to
integrate the resulting equation. To model a continuous
random potential we generate, for each j, a cubic spline
U�uj; j� passing through regularly spaced uncorrelated
Gaussian random points [17,28]. To characterize the ge-
ometry of the line during the relaxation we introduce the
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structure factor S�q; t� 	 s�q; t� � 1
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quqi where uq �PL�1

j�0 uj�t�e
�iqj and q � 2�n=L with n � 1; . . . ; L� 1.

In the absence of disorder the relaxation of the string can
be solved analytically and S�q; t� is

Spure�q; t� � Seq
pure�q��1� exp��2cq2t=��� (2)

where Seq
pure�q� � T=cq2 is the structure factor at equilib-

rium. From (2) we can separate two regimes: (i) At large q
the line is equilibrated with the thermal bath and its ge-
ometry is described by the equilibrium roughness exponent
� � 1=2. This behavior can be extracted from the q��1�2��

power-law decay of the structure factor. (ii) At small q,
however, the string still has a memory of the flat initial
condition, and the structure factor reaches a plateau:
Spure�q! 0�; t� � �2T=��t. The crossover between these
two regimes is driven by a unique growing characteristic
length scale L�t� that can be defined from the intersection
point of the two limiting behaviors. In the pure case
Lpure�t� � 2�

�������������
2ct=�

p
and its power-law growth defines

the dynamical exponent z, as L�t� � t1=z.
We now discuss our numerical results for the system

with disorder. We simulate lines of size L �
256; 512; 1024 with c � � � 1. We take R�0� � 1 and
temperatures ranging from T � 0:1 to T � 0:7. In
Fig. 1(a) we show the typical relaxation of a string. Note
that in the pure case, for the same parameters, the equili-
bration of a line of size L � 256 occurs after a time t� 103

(see Fig. 2). The presence of barriers in the disordered case
makes the dynamics much more slow, and equilibrium is
not yet reached at time t � 106. We show in Fig. 1(b) the
evolution of S�q; t�. As in the pure case two regimes are
observed. At short length scales the line has reached equi-
FIG. 1. (a) Typical configurations of the string for different
times, at T � 0:5. (b) Structure factor for different times at T �
0:5, averaged over 1000 disorder realizations. The dashed line
corresponds to the thermal equilibrium solution which it is
reached at very long times.
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librium in the random environment and it is characterized
by the well-known roughness exponent � � 2=3 [29]. At
large length scales a plateau is still present and a crossover
growing length L�t� can be defined. Quite generally the
scaling form of S�q; t� can be written as

S�q; t� � Seq�q�G�qL�t�� (3)

where G�x! 0� � x1�2� and G�x! 1� � 1. The analyti-
cal calculation of L�t� is clearly a nontrivial task, but a
simple estimate can be done relying on phenomenological
scaling arguments, based on creep. At low temperatures the
relaxation is dominated by the energy barriers U�L� that
must be overcome in order to equilibrate the system up to a
length scale L. Using the Arrhenius thermal activation law
we can thus express the relaxation time t�L� �
exp��U�L��. Even if the exact numerical determination
of U�L� is an NP-complete problem it is usually conjec-
tured that the typical barriers of the energy landscape scale,
asymptotically with L, the same way as the free energy
fluctuations: U�L� � L�, with � � 1=3 for a line.
Numerical calculations [30] and functional renormaliza-
tion group calculations [15] seem to confirm this conjec-
ture. Following these arguments we infer that [31]

L�t� � Lc

�
T
Uc

log
�
t
t0

��
1=�

(4)

where Lc is the Larkin length [32], Uc the associated
energy scale Uc � U�Lc�, and t0 a microscopic time scale.
FIG. 2. Growing characteristic length scale L�t� of a string of
size L � 256. The symbols (�) correspond to the relaxation of
the clean system and the dotted line to the analytical result. The
symbols (�) correspond to the disordered case. The solid line is
a fit to Eq. (4), the dashed line is a fit to the power-law growth at
intermediate scales. For 104 < t < 106 we get � � 0:49. Inset:
exponent � extracted from the fit to Eq. (4) in the time interval
ti < t < 106. The symbols (4) correspond to a system size L �
512, and the symbols (
) to L � 256.
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FIG. 3. (a) Cumulative distribution function of the plateau
value s for fixed times t ranging from 5 to 106. Symbols (�)
indicate the mean value St. Inset: collapse of the cumulative
distributions in the rescaled variable s=St. (b) Cumulative dis-
tribution function of the barriers u for s � 10; 20; 40; 80. Circles
(�) indicate the mean value Us. Step lines are obtained from raw
data, while solid lines are obtained from the rescaled cumulative
distribution of s, (5).
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An alternative form of L�t�would be the power-law scaling
of the clean system, L�t� � t1=z, but with a new exponent
z > 2 taking into account the effect of the energy barriers.
Note that this proposal corresponds to thermally activated
motion over barriers scaling logarithmically with the size
L. Such behavior has been observed in various 2-
dimensional disordered systems including periodic elastic
systems in the so called ‘‘marginal glass phase’’ [20–23].
For this model it is possible to show that the dynamical
exponent takes the form z�T� / 1=T. Moreover the relaxa-
tion towards a steady state of an elastic string just above the
depinning threshold shows the same power-law behavior
with a dynamical exponent z < 2 [20].

We now compare our results with the above different
scenarios. The growing length scale L�t� can be determined
from the average structure factor S�q; t� shown in Fig. 1(b).
In practice we define L�t� as the intersection between the
plateau St � S�q! 0�; t� and the equilibrated structure
factor Seq � q�7=3. The result is shown in Fig. 2. Note that
the whole time dependence of L�t� is described neither by
(4) nor by a pure power law. The latter scaling can only
approximately fit the short time relaxation: the fitted dy-
namical exponent z strongly decreases with increasing
temperature and ranges from 20 to 4. However, for long
times, this power-law scaling can be ruled out due to the
observed bending in the log-log scale. To be sure that this
bending is not an artifact of the proximity of the finite size
equilibration we verified its presence for bigger systems up
to a size L � 1024 where L�t� � L for all considered
times. For this reason the logarithmic growth seems to be
more adequate for long times. A two-parameters fit to (4)
gives an exponent �which, at long times, becomes size and
time independent, as shown in the inset of Fig. 2.

Although the logarithmic growth law describes well our
data at long times, we find an exponent � � 0:49, bigger
than the expected value 1=3. If we assume that the dynam-
ics of relaxation is governed by Arrhenius activation, this
result indicates either a violation of the expected scaling of
barriers or the presence of non-negligible subleading cor-
rections in this scaling at the length scales spanned by L�t�
in our simulations. The inset of Fig. 2 shows, for different
time-windows, the exponent �. The saturation of � ex-
cludes strong subleading corrections at least for the largest
times reached in the simulations. However, the adequacy of
the fit with � � 0:49 in the last three decades is still not
enough to exclude the presence of logarithmic corrections
in the leading term: U�L� � L1=3log��L�. The latter sce-
nario is consistent with the upper bound scaling found
numerically in Ref. [30] for the barriers separating meta-
stable states of a directed polymer in 2-dimensional ran-
dom media. Such a scaling has been shown [26] to also fit
well the Monte Carlo relaxation data for a directed
polymer.

The scaling of the barriers U�L� and the subsequent
evolution of L�t� refer to typical values of U and L�t�.
On the other hand, for broad enough distributions typical
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and mean values can be very different [33]. Therefore, the
deviations of the numerical data from the predicted behav-
ior (4) might be produced by a broad distribution of bar-
riers. To check for such a possibility, and to extract the
barrier distribution, we study the sample to sample fluctu-
ations of the various observables. A convenient quantity to
compute for each evolving sample is the instantaneous
value of the structure factor plateau s � s�q! 0�; t�
which is directly related to the growing length l�
s1=�1�2��. As raw data directly confirms, this quantity is a
stochastic process growing monotonically with the time t.
Thus, its sample to sample fluctuations can be directly
related to the distribution of relaxation times 	 and to the
statistics of barriers u by assuming Arrhenius activation,
u� log�	� [34]. One obtains [35]

�s�u� � 1��u�s� (5)

where u (s) is the sample dependent barrier (structure
factor plateau) and �s�u� [�u�s�] its cumulative distribu-
tion function for a given value of s (u) [i.e., �s�u0� is the
probability of finding a barrier u smaller than u0, given a
fixed value s for the plateau]. Figure 3(a) shows �u�s� as a
function of s for different values of u. For all u the
distributions are narrow and, on a logarithmic scale, appear
just shifted. This suggest the simple rescaling s=St, which
collapses all the curves as shown in the inset. Strikingly, we
find that this rescaled function for the fully disordered
system is indistinguishable, at the resolution of our nu-
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merical study, from that [�u�x � s=St� � 1� exp��x�]
of the clean system, and from the identical one that one
would obtain for the Larkin model [36] of disorder (de-
spite the fact that this model does not have pinning and
metastable states). This scaling form implies that the
sample to sample fluctuations of the growing length, l�t�,
are given by �u�x � l=Lt� � 1� exp��
x1�2� �, with

 � ��1� 1

1�2��
1�2� . The statistics of barriers is obtained

from (5) using the evolution St vs u� log�t� of Fig. 2. In
Fig. 3(b) we show that the cumulative distribution �u�s�
derived using the latter method indeed coincides with the
one obtained from a direct analysis of the raw data of s vs u
for each sample. As for the sample dependent plateau s (for
given values of u), the distributions of u for given values of
s are found to be exponentially narrow. Scaling arguments
based on typical values are therefore justified, since they
can be safely translated directly to the mean values. This
indicates that the effect of sample to sample fluctuations
cannot explain the deviations of the numerical data with
respect to the phenomenological predictions observed in
Fig. 2, and that such deviations must come from the scaling
of the barriers. Note also that, as visible in Fig. 3(b), the
barrier distribution �s�u�, contrary to the distribution of
plateaux �u�s�, does not scale with u=Us, where Us � hui
is the mean value. Such a scaling would only work if a pure
power-law scaling of the barriers with length were per-
fectly verified. The complex behavior of �s�u� clearly
comes from the existence of two regimes in the scaling
of the barriers as a function of time (length) as shown in
Fig. 2. However, it remains to be understood why the
presence of these two regimes does not affect the perfect
collapse for �u�s� as a function of s=St, ranging from the
shortest to the longest times. No analytical explanation of
this fact, nor of the form of the corresponding scaling
function, exists so far.

At long times, approximate power-law scaling for the
barriers is recovered, and thus the distribution of barriers
would scale with u=Us. In this case (5) shows that the
universal function for all the cumulative distribution func-
tions �s�u� would be a stretched exponential. This form is
different from the one that extremal statistics arguments
would suggest [33], prompting for a reexamination of the
physical understanding of the barrier distribution in such
disordered systems.
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