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Universal Scaling of the Conductivity at the Superfluid-Insulator Phase Transition

Jurij Šmakov and Erik Sørensen
Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada

(Received 30 May 2005; published 27 October 2005)
0031-9007=
The scaling of the conductivity at the superfluid-insulator quantum phase transition in two dimensions
is studied by numerical simulations of the Bose-Hubbard model. In contrast to previous studies, we focus
on properties of this model in the experimentally relevant thermodynamic limit at finite temperature T. We
find clear evidence for deviations from !k scaling of the conductivity towards !k=T scaling at low
Matsubara frequencies !k. By careful analytic continuation using Padé approximants we show that this
behavior carries over to the real frequency axis where the conductivity scales with !=T at small
frequencies and low temperatures. We estimate the universal dc conductivity to be �� � 0:45�5�Q2=h,
distinct from previous estimates in the T � 0, !=T � 1 limit.
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The nontrivial properties of materials in the vicinity of
quantum phase transitions [1] (QPTs) are an object of
intense theoretical [1–3] and experimental studies. The
effect of quantum fluctuations driving the QPTs is espe-
cially pronounced in low-dimensional systems, such as
high-temperature superconductors and two-dimensional
(2D) electron gases, exhibiting the quantum Hall effect.
Particularly valuable are theoretical predictions of the
behavior of the dynamical response functions, such as the
optical conductivity and the dynamic structure factor, since
they allow for direct comparison of the theoretical results
with experimental data. It was pointed out by Damle and
Sachdev [2] that at the quantum-critical coupling the
scaled dynamic conductivity T�2�d�=z��!; T� at low fre-
quencies and temperatures is a function of the single
variable @!=kBT:

��!=T; T ! 0� � �kBT=@c��d�2�=z�Q��@!=kBT�: (1)

Here �Q � Q2=h is the conductivity ‘‘quantum’’ (Q � 2e
for the models we consider), ��x � @!=kBT� is a universal
dimensionless scaling function, c a nonuniversal constant,
and z the dynamical critical exponent. For d � 2 the ex-
ponent vanishes, leading to a purely universal conductivity
[4], depending only on frequency !, measured against a
characteristic time @� set by finite temperature T as
@!=kBT. Once @!=kBT � 1, for fixed T, the system no
longer ‘‘feels’’ the effect of finite temperature and it is
natural to expect that at such high ! a crossover to a
temperature-independent regime will take place [3], so
that ��!; T� � ��!� with ��!� decaying at high frequen-
cies as 1=!2 [2]. Deviations from scaling of � with !
therefore signal that temperature effects have become im-
portant. Note that the predicted universal behavior occurs
for fixed !=T as T ! 0. The physical mechanisms of
transport are predicted [2] to be quite distinct in the differ-
ent regimes determined by the value of the scaling variable
x: hydrodynamic, collision dominated for x	 1, and col-
lisionless, phase coherent for x� 1 with � � ��1�
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largely independent of x in d � 2 and � independent of
T [2,5].

Intriguingly, early numerical studies [6–9] of QPTs in
model systems have failed to observe scaling with
@!=kBT. The results of the experiments seeking to verify
the scaling hypothesis are ambiguous as well. Some of
them, performed at the 2D quantum Hall transitions [10]
and 3D metal-insulator transitions [11], appear to support
it. Others either note the absence of scaling [12] or suggest
a different scaling form [13]. While the discrepancy be-
tween theory and experiment may be attributed to the
unsuitable choice of the measurement regime [2], typically
leading to @!=kBT � 1, there is no good reason why the
predicted scaling would not be observable in numerical
simulations if careful extrapolations first to L! 1 and
then T ! 0 for fixed !=T are performed.

Our primary goal is to resolve this controversy by per-
forming precise numerical simulations of the frequency-
dependent conductivity at finite temperatures in the vicin-
ity of the 2D QPT, exploiting recent algorithmic advances
to access larger system sizes and a wider temperature
range. After the extrapolation of the results to the thermo-
dynamic and T � 0 limits and careful analytic continu-
ation, we are able to demonstrate how the predicted
universal behavior of the conductivity may indeed be
revealed.

We consider the 2D Bose-Hubbard (BH) model with the
Hamiltonian H BH �H 0 
H 1, where the first term
describes the noninteracting soft core bosons hopping via
the nearest-neighbor links of a 2D square lattice, and the
second one includes the Hubbard-like on-site interactions:

H 0 � �t
X
r;�

�byr br
� 
 b
y
r
�br� ��

X
r
nr; (2)

H 1 �
U
2

X
r
nr�nr � 1�: (3)

Here � � x; y, nr � byr br is the particle number operator
on site r, and byr ; br are the boson creation and annihilation
3-1 © 2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.95.180603


0.2

κ(
β,

L)

L=8
L=12
L=16
L=20

(a)

PRL 95, 180603 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
28 OCTOBER 2005
operators at site r. Model parameters include the hopping
constant t, Hubbard repulsion U, and chemical potential
�. The mean-field ground state phase diagram of this
model (Fig. 1) displays a number of Mott-insulating lobes
with fixed integer boson density at low Zt=U (Z � 4 is the
lattice coordination number). As the hopping t is increased
or� is varied, a QPT to a superfluid (SF) phase takes place.
We concentrate on the QPT occurring at the tip of the Mott
lobe along the path of constant �, distinct from the generic
one occurring elsewhere along the phase boundary [14].

The numerical simulations of H BH were performed
using the stochastic series expansion (SSE) technique
with directed loop updates [15,16], which allowed us to
directly evaluate the relevant correlation functions without
the need to discretize or numerically integrate over the
imaginary time. We have also employed an alternative
�2
 1�-dimensional classical representation [7,17] of
H BH in terms of link-current variables describing the total
bosonic current J � �Jx; Jy; J�� defined on a discrete L�
L� L� space-time lattice (L��� � @�):

H V �
1

K

X
�r;��

�
1

2
J2
�r;�� ��J

�
�r;��

�
: (4)

J has to be conserved and is therefore divergence free, r �
J � 0. The link-current variables take on integer values
Jx;y;� � 0;1;2; . . . and denote the deviation of the par-
ticle number from its mean, so the transition corresponds to
� � 0. K is the effective temperature, varying like t=U in
H BH. The model defined by H V has been studied in the
past using a very efficient directed geometrical worm
algorithm [18], and its critical point at � � 0 has been
determined [18] to be Kc � 0:33305�5�. A drawback of
this representation is that the time direction is discrete,
imposing an ultraviolet frequency cutoff of data at !c �
1=��, in contrast to SSE, where there is no such problem.
The two numerical approaches are therefore largely com-
plementary. These advanced techniques allowed us to
simulate lattices of linear sizes up to L � 30 and inverse
temperatures up to � � 10 using SSE for H BH, and L �
256, L� � 64 using the directed geometrical worm algo-
rithm for H V .
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FIG. 1. Mean-field ground state phase diagram of the 2D
Bose-Hubbard model. Shaded areas are the Mott-insulating
phases. Dashed lines are constant density profiles in steps of
0.2. � indicates the location of QCP at the tip of Mott lobe as
determined by SSE simulations along the dotted line.
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Performing SSE simulations of H BH we first precisely
locate the quantum-critical point (QCP) for fixed �=U at
the tip of the first Mott lobe. This transition belongs to the
(2
 1)D XY universality class with a dynamical critical
exponent z � 1 [14]. In the vicinity of the QCP the SF
density �s and compressibility � are expected to obey the
scaling relations

�s � L2�d�zY1��L
1=�; �L�z�; (5)

� � Lz�dY2��L1=�; �L�z�: (6)

Here � is the correlation length critical exponent, � �
1=kBT, � � jt� tcj, and Y1;2�x; y� are the two-variable
scaling functions. For a fixed aspect ratio �L�z plots of
the L�s and L� should then intersect at the critical point
� � 0. Results of such a calculation at constant �c=U �
0:375 are presented in Fig. 2, from which we determine
Ztc=U � 0:2385�5�, � � 0:66�5�. The position of the QCP
and the shape of the phase boundary in its vicinity is
consistent with previous simulations [19] and strong-
coupling perturbation theory [20].

To analyze the behavior of the zero-momentum conduc-
tivity in the vicinity of the QCP we employ the relation
between the dynamic conductivity ��!� and the Fourier
transform �xx�!� of the time-dependent current-current
correlation function (CCCF) established by the Kubo
formula [21,22]. In SSE the real-time CCCF required to
determine �xx�!� is not directly accessible. Instead, the
standard approach is to measure the CCCF �xx��� �
hjx���jx�0�i on the imaginary time axis, calculate its
Fourier transform �xx�i!k� as a function of the
Matsubara frequencies !k � 2	k=�, and analytically
continue the result to real frequencies [8,9,22]. Here and
below we adopt a unit system in which both Q and @ are
unity, and jx��� is the Heisenberg representation of the
current operator jx � it�byr
xbr � b

y
r br
x�. We have:
0

0.1L

0.230 0.235 0.240 0.245
Zt/U

0

2

4

6

Lρ
s(β

,L
) L=8

L=12
L=16
L=20

(b)

FIG. 2. The compressibility (a) and SF density (b) vs Zt=U at
fixed �=U � 0:375 and aspect ratio �L�z � 0:5. The dashed
vertical line is drawn at Ztc=U � 0:2385. Error bars are dis-
played only if larger than the symbol size.
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FIG. 3 (color online). The conductivity ��!k� in units of �Q
vs Matsubara frequency !k=!c as obtained from H V (a). All
results have been extrapolated to the thermodynamic limit L!
1 using the scaling form f�L� � a
 b exp��L=��=

����
L
p

[27] by
calculating ��!k� at fixed L� using 9 lattice sizes from L �
L� . . . 4L� as shown in (b). ��!k� in units of �Q vs Matsubara
frequency !k as obtained from SSE calculations of H BH, with
some typical error bars shown. All results have been extrapolated
to the thermodynamic limit by calculating �xx�!k� for fixed �
using 5 lattice sizes L � 12; . . . ; 30 (c). Scaling plot of the
conductivity data from (a) vs !k=T. � denotes extrapola-
tions to T ! 0 (L� ! 1) at fixed !k=T using: f�L�� � c

d exp��L�=���=

������
L�
p

[27] (d).

PRL 95, 180603 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
28 OCTOBER 2005
��i!k�=�2	�Q� �
h�kxi ��xx�i!k�

!k
�
��i!k�

!k
: (7)

Here h�kxi is the kinetic energy per link and ��i!k� is the
frequency-dependent stiffness. To measure �xx�i!k� we
note that �xx��� may be expressed in terms of the correla-
tion functions �
�

xx �r; �� � hK


x �r; ��K�

x �0; 0�i of operators
K
x �r; �� � tbyr
x���br��� and K�x �r; �� � tbyr ���br
x���,
which may be estimated efficiently in SSE [15].
Remarkably, it is possible to analytically perform the
Fourier transform with respect to � yielding

�
�
xx �r; !k� �

�
1

�

Xn�2

m�0

�amn�!k�N��; 
;m�
�
; (8)

where N��; 
;m� is the number of times the operators
K
�r� and K��0� appear in the SSE operator sequence
separated by m operator positions, and n is the expansion
order. The coefficients �amn�!k� are given by the degenerate
hypergeometric (Kummer) function: �amn�!k��1 F1�m

1; n;�i�!k�. This expression and (8) allow us to directly
evaluate �xx�r; !k� as a function of Matsubara frequencies,
eliminating any errors associated with the discretization of
the imaginary time interval. Analogously, in the link-
current representation ��i!k� can be calculated [7], and
the conductivity can be obtained from Eq. (7).

In Fig. 3 we show results for ��i!k� versus !k obtained
using the geometrical worm algorithm on H V at Kc
[Fig. 3(a)] and by SSE simulations at tc; �c of H BH

[Fig. 3(c)]. In both cases the results have been extrapolated
to the thermodynamic limit L! 1 at fixed �. As evident
from Fig. 3(a), the results deviate from scaling with !k at
small !k and more significantly so at higher temperatures
(small L�). These deviations are also visible in the con-
tinuous time SSE data in Fig. 3(c), demonstrating that they
cannot be attributed to time discretization errors. Similar
deviations have been noted previously [6,7] but were not
analyzed at fixed �. Since the deviations persist in the L!
1 limit at fixed �, they may only be interpreted as finite T
effects. Expecting a crossover to!k=T scaling at small!k,
we plot our results versus !k=T in Fig. 3(d). For L� � 32,
��!1=T� is already independent of T (L�). In fact, as
shown in Fig. 3(d), for !1...5, ��!k=T; T� can unambigu-
ously be extrapolated to a finite ��!k=T; T ! 0� � ��x�
limit. This fact is a clear indication that !k=T scaling
indeed occurs as T ! 0. Tentatively, for increasing
!k=T, ��!k=T; T ! 0� appears to reach a constant value
of roughly 0:33�Q ���1� in excellent agreement with
theoretical estimates [2,23]. We note that deviations from
!k scaling appear to be largely absent in simulations of
H BH with disorder [7,8]. However, at this QCP the dy-
namical critical exponent is different (z � 2). As is evident
from the size of the error bars in Fig. 3, simulations of H V
are much more efficient than the SSE simulations directly
on H BH. In the following analytic continuation we there-
fore use the SSE data mostly as a consistency check.
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Our results on the imaginary frequency axis are limited
by the lowest Matsubara frequency, !1 � 2	kBT=@.
However, the information about the behavior of �0�!� �
Re��!� at low! is embedded in values of the CCCF at all
Matsubara frequencies, allowing us to determine it. In
order to study the !=T scaling predicted for the hydro-
dynamic collision-dominated regime [2] @!=kBT 	 1, we
have attempted analytic continuations of ��i!k� to obtain
�0�!� at real frequencies. SSE results for H BH were
analytically continued using the Bryan maximum entropy
(ME) method [24] with flat initial image. For the results
obtained for the link-current model H V we use a method
that should be most sensitive to low frequencies !=!c < 1
or ��x	 1�. We fit the extrapolated low frequency part
(first 10–15 Matsubara frequencies) of ��i!k� to a 6th-
order polynomial. The resulting 6 coefficients are then
used to obtain a �3; 3� Padé approximant using standard
techniques [25]. This approximant is then used for the
analytic continuation of � by i!k ! !
 i�. Resulting
real frequency conductivities �0�!� are displayed in
Fig. 4(a) versus !=!c. The typical SSE data are plotted
versus !=10 and are only shown for L � 20, � � 10.

The results for H V show a broadened peak as !! 0,
due to inelastic scattering, followed by a second peak
nicely consistent in height and width with the SSE data.
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FIG. 4. The real part of the conductivity �0 at the critical
coupling in units of �Q. The data marked L�, plotted vs
!=!c, were obtained using H V , combined with the analytic
continuation of ��!=!c� as explained in the text. Results for
!=!c * 1=2 are denoted by dotted lines. The data marked SSE,
plotted vs !=10, were obtained by direct SSE simulations of
H BH with L � 20, � � 10 and subsequent maximum entropy
analysis (a). Results as a function of !=T (b).
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The SSE data also display a high narrow peak at very low
frequencies, whose position and shape are unstable with
respect to the choice of the initial image and MaxEnt
parameters. This is clearly an artifact of the method; how-
ever, its presence is indicative of the tendency to accumu-
late the weight at very low frequencies, in qualitative
agreement with H V result. The subsequent falloff in the
conductivity at high frequencies is physically consistent,
but its functional form depends on the Padé approximant
used. For !=!c * 1=2, we expect the analytic continu-
ation of the data for H V to become sensitive to the order of
the approximant used and we therefore indicate the results
in this regime by dotted lines only. We note that results at
all temperatures yield the same dc conductivity �? �
0:45�5��Q, theoretically predicted [4] to be universal.
Because of the very different scaling procedure this result
differs from previous numerical result �? � 0:285�20��Q
on the same model [6] in the T � 0 limit. It also differs
significantly from a theoretical estimate [2], �� �
1:037�Q, valid to leading order in � � 3� d. Remark-
ably, our result for the dc conductivity is very close to the
one obtained in Ref. [8] for the phase transition in the
disordered Bose-Hubbard model. Experimental results in-
dicate a value close to unity [26]; however, it was previ-
ously observed [7] that long-range Coulomb interactions,
impossible to include in the present study, tend to increase
� considerably. The same data are shown versus !=T in
Fig. 4(b). Notably, when using this parametrization !c
cancels out and all our data follow the same functional
form. The scaling with !=T at low frequencies is now
immediately apparent, with a surprisingly wide low !=T
peak. The width of this peak is consistent with the data in
Fig. 3(d). Furthermore, on the same !=T scale the con-
tinuous time SSE data for H BH and the results for H V
qualitatively agree.

In summary, we have demonstrated that by doing a very
careful data analysis it is possible to observe the theoreti-
cally predicted universal !=T scaling at the 2D superfluid-
18060
insulator transition. We have also estimated the universal
dc conductivity at this transition and found that it differs
significantly from existing numerical and theoretical
estimates.
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