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No-Switching Quantum Key Distribution Using Broadband Modulated Coherent Light
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We realize an end-to-end no-switching quantum key distribution protocol using continuous-wave
coherent light. We encode weak broadband Gaussian modulations onto the amplitude and phase
quadratures of light beams. Our no-switching protocol achieves high secret key rate via a post-selection
protocol that utilizes both quadrature information simultaneously. We establish a secret key rate of
25 Mbits=s for a lossless channel and 1 kbit=s for 90% channel loss, per 17 MHz of detected bandwidth,
assuming individual Gaussian eavesdropping attacks. Since our scheme is truly broadband, it can
potentially deliver orders of magnitude higher key rates by extending the encoding bandwidth with
higher-end telecommunication technology.
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FIG. 1. Schematic of experiment. LO: local oscillator; RNG:
random number generators; AM/PM: amplitude/phase modula-
tors; PBS: polarizing beam splitter; �=2: half wave plate; BS:
50=50 beam splitter; j0i: vacuum state. (inset) (i) Bob’s detected
noise spectra of the broadband modulation encoding shown with
respect to the quantum noise limit (ii). Grey region denotes the
17 MHz sideband frequency spectrum used in our analysis.
Quantum key distribution (QKD) [1] is a technique for
generating a shared cryptographic key between two parties,
Alice and Bob, where the security of the shared key is
guaranteed by the laws of quantum mechanics. QKD based
on continuous variables (CV) [2], in particular coherent
state QKD [4–9], promises significantly higher secret key
rates in comparison to single photon schemes [1,3]. They
are relatively simple to implement, in contrast to QKD
protocols employing ‘‘nonclassical’’ states [10]. Coherent
states can be readily produced by a well-stabilized laser
and can be detected using high quantum efficiency detec-
tors. Confidence in the practicability of coherent state
QKD protocols has increased since it was shown that the
security of these protocols can be ensured for channel
losses greater than 50% using post-selection [6] or reverse
reconciliation [7] procedures. In principle, it is therefore
possible to generate a secure key even in the presence of
arbitrarily high loss. This development, coupled with po-
tentially high secret key rates, render coherent state QKD
protocols viable contenders for real-world cryptographic
applications.

Our coherent state QKD protocol builds on previous
protocols presented in [5–7] and is an advance on random
switching by simultaneously measuring both measurement
bases [8]. The QKD protocol operates as follows. Alice
draws two random numbers xA and pA from two Gaussian
probability distributions with zero mean and variances of
V�xA� and V�pA�, respectively. Alice prepares a coherent
state jxA � ipAi and sends it to Bob. As a result of losses in
the quantum channel, vacuum noise is coupled into the
transmitted state. On receiving the state, Bob simulta-
neously measures both the amplitude (xB) and phase (pB)
quadratures of the state via a 50=50 beam splitter. At this
stage, Alice and Bob share correlated random data from
which they can generate a secret key. They use post selec-
tion [6] to reverse any initial ‘‘information advantage’’ a
potential eavesdropper (Eve) might have obtained, and
perform information reconciliation and privacy amplifica-
tion to distill a final secret key. Although no-switching
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coherent state QKD protocols have been demonstrated to
be secure against coherent (collective) attacks [11] and
progress has been made towards proving the unconditional
security of CV coherent state QKD protocols [11,12], we
restrict our analysis of Eve here to only incoherent
Gaussian attacks [4–9].

The experimental setup is shown in Fig. 1. In our im-
plementation we use a continuous-wave, coherent laser
operating at 1064 nm. In contrast to pulsed or temporal
encoding schemes, we achieve high secret key rates by
exploiting the continuous-wave nature of the laser field to
implement a true broadband encoding protocol. We em-
ploy standard electro-optic modulators to encode weak
broadband modulations onto the quantum states at the
sideband frequencies of the electromagnetic field. Using
this technique, the transmission rate of coherent states can
be arbitrarily increased, limited only by Alice’s encoding
and Bob’s detection bandwidths. To maximize Bob’s de-
tection bandwidth, we simultaneously measure both the
amplitude and phase quadratures of the electromagnetic
3-1 © 2005 The American Physical Society
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FIG. 2 (color online). (a) The ‘‘global’’ perspective of Alice’s
(xA) and Bob’s (xB) data, represented in a scatter-plot diagram,
for transmission losses of 54%. Dotted lines: ‘‘banded informa-
tion channels’’; green points: data that have error free binary
encoding; blue points: data that have bit-flip errors; red points:
data that have a negative net information rate. (b) Bob’s per-
spective of his and Alice’s data. (c) The global perspective and
(d) Bob’s perspective of the theoretical net information rate
contour plots.
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field at Bob’s station, using the no-switching protocol [8].
This protocol has a significantly improved secret key rate
and no weakening of security when compared with pre-
vious protocols that rely on random switching between
measurement bases. This random switching requires the
precise and rapid control of the optical phase of a local
oscillator field, which is difficult to achieve in practice.

In the experiment we process quantum states encoded on
17 MHz of the sideband frequency spectrum [Fig. 1 (in-
set)]. As intrinsic classical noise is manifest at low fre-
quencies on the laser beam and our data acquisition system
has a maximum sample rate of 50 MHz, we process data
from sideband frequencies between 33 MHz and 50 MHz.
We verify that the laser field is coherent in this range with
both quadrature variances equal to V�x�; V�p� � 1:01�
0:01, normalized to the quantum noise limit. We digitally
filter the data in the identified frequency band, demodulate
and resample it at 17 MHz. To improve the statistical
correlations between Alice’s and Bob’s data, we apply a
previously characterized transfer function to the data,
which correct for the frequency response of Alice’s
electro-optic modulator and Bob’s detectors. After this
data processing, Alice and Bob have correlated random
data with Gaussian probability distributions which are
shown in a scatter-plot diagram [Fig. 2(a)]. Using a random
subset of these data they can quantify the quantum channel
transmission efficiencies of each quadrature (�x and �p),
and the variances of Alice’s quadrature displacements
[V�xA� and V�pA�] and thereby verify that the channel
noise introduced as a result of transmission losses corre-
sponds to a vacuum state. Although here we assume Gauss-
ian attacks, Alice and Bob can check for non-Gaussian
attacks by analyzing, prior to post selection, the statistical
distribution of the announced set of data. Finally, Alice and
Bob can determine the maximum information Eve could
have obtained during quantum state transmission.

In our security analysis, we assume that Eve performs a
beam splitter attack [6], where she replaces the quantum
channel with a perfect lossless line and uses a beam splitter
to simulate the channel transmission losses. The security of
our protocol relies on the indistinguishability of nonor-
thogonal pure states [13]. For every transmitted state,
Alice publicly announces the absolute values jxAj and
jpAj, thereby requiring Bob (and Eve) to distinguish from
one of the four possible coherent states prepared by Alice
j� xA � ipAi. So that Eve’s state after the beam-splitting
attack can be expressed as j �

�������������
1� �
p

xA � i
�������������
1� �
p

pAi.
The general solution for the maximum Shannon informa-
tion for the indistinguishability of four pure states is not
known. To calculate Eve’s Shannon information, we as-
sume that after the beam splitter attack Eve splits her state
on a 50=50 beam splitter, which corresponds to an optimal
cloning of the information on the two quadratures, and
performs Helstrom measurements [14], denoted Hx and
Hp, on the two resulting outputs. For each Helstrom mea-
surement, Hx or Hp, Eve must distinguish between two
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mixed states, each being a mixture of two pure states on
either side of the x; p � 0 axis. The Shannon information
for the distinguishability of two pure states of an equivalent
separation is greater than for that of two mixed states,
hence giving us an upper bound on Eve’s information [15].
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where zv � jh�vEjvEij2 � e�2jvEj2 � e��1��v�jvAj
2

are
Eve’s quadrature overlap functions, and v � fx; pg.

We next calculate the mutual information between Alice
and Bob. The scatter-plot diagram of Figs. 2(a) and 2(b)
show the ‘‘global’’ perspective of Alice’s and Bob’s results,
and Bob’s perspective during the QKD protocol (after
Alice publicly announces the absolute value of her data),
respectively. To interpret information encoded onto the
quantum states, Alice and Bob use a binary encoding
system based on the directional displacements of the quad-
rature measurements, interpreting positive displacements
3-2
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FIG. 3 (color online). Secret key rate for varying channel
losses. Solid line: theoretical net Shannon information rate;
circle symbols: experimental secret key rate after post selection;
square symbols: secret key rate after privacy amplification.
(inset) Bob’s mutual information with Alice (normalized to the
Shannon’s capacity) for increasing number of banded informa-
tion channels with 54% channel loss.
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in phase space as a binary ‘‘1’’ and negative displacements
as a binary ‘‘0.’’ Hence 2 bits of information are encoded
per transmitted state (one bit on each quadrature). From the
global perspective of Alice’s and Bob’s results [Fig. 2(a)],
the points in the diagonal quadrants correspond to error-
free bits, while the points in the off-diagonal quadrants
correspond to bit-flip errors. We encode at approximately
the Shannon capacity of the quantum channel [16] by
partitioning Alice’s and Bob’s data into ‘‘banded informa-
tion channels’’ (BICs). We achieve this by calculating the
theoretical probability of error for Alice’s and Bob’s data
given by

Pv � �e
�4jvAvBj

������
2�v
p

�=�1� e�4jvAvBj
������
2�v
p

� (2)

and allocate the data into BICs with increasing probabil-
ities of error, as shown by the dotted hyperbolas in
Figs. 2(a) and 2(b). For each BIC, let the number of error-
free points be denoted by Ngood and the number of bit-flip
errors by Nerror. We calculate the experimental probability
of error for each BIC using Pv � Nerror=�Nerror � Ngood�.
Bob’s mutual information with Alice summed over n BICs
is given by

IAB �
X

v�fx;pg

Xn
k�1

�1� P�v;k�log2�P�v;k��

� �1� P�v;k��log2�1� P�v;k���; (3)

where P�v;k� is the probability error rate for the kth BIC, of
either the amplitude or phase quadrature. The mutual
information rate between Alice and Bob [Eq. (3)] ap-
proaches the Shannon capacity [16] as the number of
BICs is increased. In our analysis we partition the data
into 10 BICs by assigning an equal number of data points
to each, thereby achieving a mutual information rate, prior
to information reconciliation and privacy amplification, of
	99% of the Shannon information limit for a binary
symmetric quantum channel [Fig. 3 (inset)].

From his perspective Bob can calculate, for each BIC,
the amount of mutual information he has with Alice
[Eq. (3)], and Eve has with Alice [Eq. (1)]. The total secret
information rate summed over all BICs can be expressed as

�I �
X

v�fx;pg

Xn
k�1

�
IAB�v;k� �

ZZ
S�v;k�

IAE
P�vA; vB�dvAdvB

�
;

(4)

where the joint probability distribution of Alice and Bob’s
measurements is given by P�vA; vB�, S�v;k� is the area of the
kth BIC of either the amplitude or phase quadrature, and
Bob’s mutual information with Alice for the kth BIC for
each quadrature is denoted by IAB�v;k�. Figure 2(c) is a
contour plot of the theoretical net information rate from a
global perspective of Alice’s and Bob’s results. Alice and
Bob cannot directly use Fig. 2(c), as Bob only knows the
absolute values of Alice’s data. Bob’s perspective of the
theoretical net information rate is shown in Fig. 2(d). Using
18050
Eq. (4) Bob can post select points about which his mutual
information with Alice is greater than Eve’s maximum
accessible information. Applying this post-selection pro-
cedure Alice and Bob gain an ‘‘information advantage’’
over Eve, reversing Eve’s possible information advantage
prior to post selection [6].

After post selection, we proceed to distill an errorless
secret key by performing an information reconciliation
procedure. We take advantage of the BICs, each having
differing probability error rates, by applying the reconcili-
ation procedure iteratively to each BIC, thereby increasing
the overall efficiency of the procedure. To amplify Bob’s
information advantage, we apply an ‘‘n bit repeat code’’
advantage distillation protocol [17], at the cost of reducing
the size of the key. After advantage distillation, we apply
the well-known ‘‘Cascade’’ error reconciliation protocol
[18] to correct the remaining errors. We distill a final secret
key by employing a privacy amplification procedure based
on universal hashing functions [19]. Eve’s resulting infor-
mation about the final secret key for each BIC is
2�s= ln2 bits, where s is a security factor. We decrease
Eve’s total information about the final secret key (summed
over all BICs and both quadratures) to less than 1 bit by
discarding an additional s � 5 bits per BIC.

Table I shows the experimental results for the processes
used to distill a final secret key. For 90% channel loss,
Eve’s probability error rate in the raw data is lower than
Bob’s error rate with a corresponding negative information
rate of �I � �0:18 bits=symbol. Using post selection
Alice and Bob get a slight information advantage over
Eve (�I � 0:01 bits=symbol), which is further enhanced
through advantage distillation. The cost of these processes
is a reduction in the size of the secret key, as can be seen in
the bit-rate column in Table I. Alice and Bob reconcile an
errorless string using the Cascade protocol, which leaks
3-3



TABLE 1. Experimental results for the different stages of the QKD protocol. Each procedural step shows Bob’s and Eve’s
probability error rates (P), the corresponding net information rate (�I bits=symbol) and the final secret key rate (bits=second).
Eve’s total information about the final secret key is less than one bit.

90% Transmission loss 54% Transmission loss

Rate �bits=s� P Bob (%) P Eve (%) �I �bits=sym� Rate �bits=s� P Bob (%) P Eve (%) �I �bits=sym�

Raw data 3
 107 40 24 �0:18 3
 107 19 16 �0:07
Post selection 6
 104 29 30 0.01 1
 107 13 17 0.10
Advantage distillation 9
 103 10 21 0.27 5
 106 5 10 0.18
Information reconciliation 9
 103 	0 8 0.40 5
 106 	0 4 0.24
Privacy amplification 1
 103 	0 	50 1.00 4
 105 	0 	50 1.00
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additional information to Eve, decreasing her probability
of error to 	8%. Privacy amplification is performed to
reduce Eve’s knowledge of the final key to less than 1 bit in
total. To ensure the overall security of our protocol is main-
tained, we attribute Eve in each of the processing stages a
level of information that is above the maximum theoretical
information that she could have obtained. Figure 3 shows
the secret key rate of our QKD protocol as a function of
transmission loss. For a lossless quantum channel we
achieve a final secret key rate of 	25 Mbits=s. For trans-
mission losses of 90%, we are still able to generate a final
secret key at a rate of 	1 kbits=s out of only 17 MHz of
our broadband spectrum, which represents a major im-
provement over previous protocols. The solid line in
Fig. 3 gives the theoretical curve for transmitting informa-
tion at the Shannon’s limit. For all transmission losses, the
experimental secret key rate after post selection is at this
limit. The final secret key rate is less than the Shannon’s
capacity as the information reconciliation procedure dis-
closes more error correction information than Shannon’s
equivocation limit stipulates [16]. The size of the final
secret key that can be extracted after privacy amplification
is calculated using Eve’s Rènyi entropy (Fig. 3), which is
always a lower bound on her Shannon entropy.

In conclusion, we have implemented an end-to-end co-
herent state QKD protocol for channel losses up to 90% by
using weak sideband modulation techniques and simulta-
neously measuring the amplitude and phase quadratures of
the electromagnetic field. In our analysis we only consider
17 MHz of the sideband frequency spectrum. Extending
this analysis to a much larger frequency bandwidth will
enable orders of magnitude increase in the rate of secret
key generation. Our system is not hampered by the tech-
nical difficulties of production and detection of single
photon states that constrain discrete variable QKD proto-
cols. We show that our protocol is secure against a beam-
splitting attack, and in our analysis we always assume
maximal estimates of Eve’s information. The QKD scheme
demonstrated provides a viable platform for the develop-
ment of real-world cryptographic applications over local
area networks, or citywide networks.
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