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Spin Gases: Quantum Entanglement Driven by Classical Kinematics
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A spin gas is a natural extension of a classical gas. It consists of a large number of particles whose
(random) motion is described classically, but, in addition, have internal (quantum mechanical) degrees of
freedom that interact during collisions. For specific types of quantum interactions we determine the
entanglement that occurs naturally in such systems. We analyze how the evolution of the quantum state is
determined by the underlying classical kinematics of the gas. For the Boltzmann gas, we calculate the rate
at which entanglement is produced and characterize the entanglement properties of the equilibrium state.
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We study the entanglement properties of spin gases.
We define a spin gas as a system of interacting spins (or
qubits) where the coupling strengths between the spins
are stochastic functions of time. A system that could serve
as a textbook example of a spin gas is the semiquantal
Boltzmann gas, where each particle carries an internal
(two-level) quantum degree of freedom. During a collision
of two particles, the internal degrees of freedom interact
and can become entangled. The statistics of the collisions,
described by kinetic gas theory, leads to randomly fluctu-
ating coupling strengths between the spins. It is an intrigu-
ing question, how the evolution of the quantum state of the
system is determined by the underlying classical thermo-
dynamics of the gas. What kind of entanglement is created
in the gas and at which rate? How is the equilibrium state of
the gas characterized in terms of its entanglement? In this
Letter we will give an answer to these and to other ques-
tions, which make the study of spin gases interesting both
from the perspective of thermodynamics and of quantum
information.

Spin gases differ from spin lattices in that the coupling
strengths have no translational symmetry and evolve in
time. From a formal point of view, spin gases are more
closely related to spin glasses, which have random, albeit
static, couplings between the spins. Although there has
been much recent work investigating, e.g., the role of
entanglement in quantum critical phenomena [see, e.g.,
[1–4] ], there is little work studying disordered quantum
systems from a similar perspective [see, however, [5] ].

We give a simple, and yet realistic, collision model for
the particles carrying the spins, and study the quantum
mechanical states that emerge from the dynamics of such
a spin gas, which we also refer to as a semiquantal gas. In
full generality, this problem seems intractable for various
reasons: the description of a many-body quantum state
usually requires exponentially large resources; strong in-
teractions do not allow for a perturbative treatment; ran-
dom interactions prevent the appearance of symmetries
and the corresponding reduction of the effective number
of degrees of freedom; finally, the restriction to low-energy
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eigenspaces, suitable for the study of ground-state or low-
temperature properties, cannot be applied here to the study
of dynamics. State-of-the-art numerical methods are lim-
ited to systems of moderate size (up to a few hundred
particles) with an entanglement that is bound or scales at
most with the surface of the block [6]. However, in dis-
ordered quantum systems with random interactions, such
as the spin gas studied here, entanglement will typically
increase with the volume of the block. Nevertheless, for
Ising (or, more generally, commuting two-body) interac-
tions we can calculate the full dynamics of the many-body
state exactly, and efficiently compute its bipartite and
multipartite entanglement properties.

Formal preliminaries.—We consider a situation where
N particles move along some classical trajectories rk�t�,
while their quantum degrees of freedom interact according
to a distance- and time-dependent Hamiltonian

H�t� �
X
k<l

g�rk�t�; rl�t��H
�kl�; (1)

where the function g�rk�t�; rl�t�� is determined by the
particular two-body interaction. We restrict ourselves to
specific types of interactions, namely, those where all H�kl�

commute. Consequently, we find that after a time t the
initial state j�0i evolves to

j�ti � Utj�0i �
Y
k>l

U�kl��’kl�t��j�0i; (2)

with U�kl��’kl�t�� � e�i’kl�t�H
�kl�

and ’kl�t� �
R
t
0 g�rk�t

0�;
rl�t0��dt0. At time t, the quantum state is fully determined
by the N�N � 1�=2 phases ’kl�t�, which in turn are deter-
mined by the interaction history of the N particles. Each
phase can be interpreted as a matrix element �kl � ’kl of
an adjacency matrix ��t� defining a weighted graph. This
description allows one to use graph-theoretical terms, such
as average path length, giant components, clustering coef-
ficient, or connectivity in the study of entanglement in spin
gases (see discussion on localizable entanglement below).
In this work we focus on the Boltzmann gas in a regime
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where the so-called random or Erdős-Rényi graphs [7]
appear. Other models of spin gases [e.g., [8] ] can give
rise to graphs, such as small worlds graphs [9], with further
interesting properties.

We now focus our attention on the case of an Ising-type
interaction with H�kl� � j11iklh11j. We assume that all
particles are initially prepared in the internal state j�i �
1=

���
2
p
�j0i � j1i�, and interact only upon a collision. These

restrictions are made for simplicity, but similar methods
can be applied to general commuting H�kl�, and arbitrary
g�rk�t�; rl�t�� and initial states (without additional
overhead).

The evolution of the initial state j�0i � j�i
�N can be

described in the standard basis fj0i; j1ig�N,

Utj�i
�N � 2�N=2

X
s

Utjsi � 2�N=2
X
s

ei=2s	��t�	sjsi; (3)

where the sum is carried out over all N-digit binary vectors
s, i.e., over all 2N different combinations of zeros and ones.
We emphasize that all the time dependence is contained in
the adjacency matrix ��t� of the graph. The parametriza-
tion of the quantum state in terms of a weighted graph that
summarizes the ‘‘collisional history’’ of the gas is both
intuitive and useful for our calculations.

Many properties of this global pure state can be under-
stood in terms of the reduced density matrices of its sub-
systems. Since the unitary operations in (2) commute with
each other, the evolution of a set A of NA particles can be
separated into two contributions. The first entangles parti-
cles within A and is determined by the block �AA of the
adjacency matrix. The second contribution couples the
subsystem A to the rest B of the system through the off-
diagonal block �AB. The effect of the latter can be obtained
by tracing out the set of particles B from the state j�ti:

~� A �
1

2N
trB

X2N�1

s;s0
ei1=2�s:�:s�s0	�	s0�jsihs0j

�
1

2NA

X
sA;s0A

�
1

2NB

X
sB

ei�sA�s0A�	�AB	sB

�
jsAihs0Aj: (4)

The second equality is obtained by writing jsi � jsAijsBi,
and the tilde in ~�A indicates that interactions within sub-
system A are not taken into account (�AA is set to zero).
Clearly, the values of the block �BB do not affect the
properties of either �A or ~�A. In the standard basis, each
off-diagonal element—or ‘‘coherence’’—of the initial
state is decreased by a factor, ~�sAs0A�t� � CsAs0A ~�sAs0A�0�,
while diagonal elements remain untouched. The multiply-
ing factor can be conveniently written as

CsAs0A � e
i=2
P
k

�sA�s0A�	�k YNB
k�1

cos
�

1

2
�sA � s0A� 	 �k

�
; (5)

where we have defined the NA-dimensional vector ��k�j �

�kj for each particle k 2 B [10]. In this form, we see that
the total effect of the interactions with particles in B on a
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particular coherence of �A can be obtained by multiplying
the effects of each individual particle in B. More suc-
cinctly, if ��k�A is the state of the subsystem due to the
sole effect of particle k 2 B, then the state �A is obtained
(up to normalization) by the Hadamard product of all
f��k�A g

NB
k�1 written in the standard basis, that is, by their

componentwise multiplication. This observation was also
made in [11] within the context of valence bond solids.

The decomposition into Hadamard products allows one
to read off the matrix elements of �A from the adjacency
matrix, but most importantly it signifies that one can
efficiently compute [8] reduced density operators �A of
small subsystems A, even when the size N of the total
system is essentially arbitrarily large. The computational
effort scales only linearly withNB in contrast to the general
case where the computational resources to calculate �A
scale exponentially with NB (because the partial trace has
to be performed over all 2NB basis states in B).

The time dependence of the quantum state of the system
in terms of ��t� (3), together with the efficient method (5)
to compute the state of (small) subsystems are crucial
properties that allow us to study spin gases. For a complete
characterization of the dynamics, one still needs to find, for
each particular gas model, the behavior of the stochastic
function ��t�. This task amounts to assigning a probability
p��t� to every collisional history ��t�. However, in order to
calculate the evolution of average properties as we do here,
it is enough to have the probability distribution pt��� of the
�’s at time t. Depending on the parameter regime, semi-
quantal gases can follow various collision patterns and
accordingly exhibit drastically different dynamics of their
quantum properties.

Characterization of entanglement.—Whereas entangle-
ment of bipartite systems is rather well understood, entan-
glement properties of multipartite systems are in general
difficult to determine. However, for pure global states, we
can already get a broad picture of the entanglement in a
multipartite system by considering all possible 2N�1 splits
of the set of particles in two groups (A and B). The
entanglement properties with respect to such bipartitions
A-B are completely determined by the eigenvalues of the
reduced density operator �A � trBj�tih�tj, and one can
use the entropy of entanglement SA � � tr��Alog2�A� to
quantify them. However, the calculation of reduced density
matrices is, in general, very difficult if not impossible
(exponential scaling in both NA and NB). Even to ascertain
whether a given system is entangled or not [rank ��A�> 1
or � 1] may be impossible. For states j�ti that occur in
the spin gases under consideration, many of these restric-
tions do not apply. First, we can use (5) to determine in an
efficient way the density matrix �A of small subsystems A
and hence calculate the entropy of entanglement with
respect to all such bipartitions. We can also compute
quantities such as the multipartite Meyer-Wallach pure-
state entanglement measure [12], which only depends
on single-body density matrices, or the ‘‘correlation
2-2
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strengths’’ [13] for finite blocks, or classical correlation
functions like those used in generalized n-party Bell in-
equalities [14]. Second, we have a simple criterion for the
presence of entanglement: the state j�ti is entangled with
respect to the partition A-B iff the two groups are connected
(i.e., an interaction between some particle in A and some
particle in B has taken place) [8].

A different aspect of (global) multipartite entanglement
is the question whether entanglement can be created (lo-
calized) between two arbitrary subsets of particles A1-A2

by performing local operations on the other particles. For
states arising in the spin gas, we find that this is the
situation iff there exists a path between A1 and A2 in the
corresponding graph, in which case their localizable en-
tanglement [4] is nonzero.

In the following, we illustrate the above methods by
studying the dynamics of entanglement in the specific
case of a semiquantal Boltzmann gas.

Boltzmann gas.—We consider a dilute ideal gas of N
particles in thermal equilibrium with a mean free path
comparable to the size of the enclosing volume. The sta-
tistical state of the gas is fully specified by the density n,
the volume V, and the temperature T. We assume
Stosszahlansatz (or molecular chaos) and hence take a
homogeneous and uncorrelated spatial distribution of the
particles (density), and an uncorrelated velocity distribu-
tion. The latter is given by the Maxwell-Boltzmann distri-
bution and is characterized by the single parameter
� �

���������������
kBT=m

p
, where m is the mass of the particles and

kB the Boltzmann constant. We assume a hard-sphere
model for collisions between particles of diameter d and
that at every collision particles acquire a phase inversely
proportional to their relative velocity, ’kl � �=vkl. We
study entanglement that arises if at a given time t � 0 all
spins are polarized along the x axis, i.e., j�i.

We first note that in such gas the quantum state is
specified at every time by a random graph [7] with
weighted edges. Random graphs are known to exhibit a
phase transition as the average degree z of a vertex in-
creases. This is reflected, e.g., in the creation of entangled
clusters—or, following the graph-theory nomenclature,
entangled components—that is, subsets of particles that
are connected in the graph, such that entanglement can be
localized between any of the constituent particles. Initially,
one finds that small [O�logN�] entangled clusters emerge,
but after a time t such that z � rt � 1 (where r is the
collision rate) a system-sized [O�N�] giant component [7]
appears, equivalent to percolation in infinite dimensions.
Hence, any pair of particles will be (with high probability)
localizable entangled after a finite time, even for N ! 1.

One could compute entanglement properties by direct
simulation of the Boltzmann gas as done elsewhere for a
lattice gas [8]. Here, however, we will focus on regimes
where analytical results can be obtained, namely, for large
collisional phases and arbitrary times, or for arbitrary
phases in the limits of short and infinite times.
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In a regime of large collisional phases �
 ���1 � 1
(i.e., large interaction constant or low temperatures) we can
assign to each collision event a random phase in �0; 2��.
This already allows us to find the expected entropy for
short times rt < 1, where r � �d2nhvri is the collision
rate and hvri �

��������������������������
16KT=�m��

p
is the mean relative veloc-

ity. For these short times, a particle will typically collide
at most once (with probability rt), and the resulting ex-
pected entropy can be obtained by direct integration:
1

2�

R
S���d� � 2� log2e. Hence, we find hS1i � rt�2�

log2e� �O��rt�2�. The entropy of entanglement between a
block A of size NA and the rest of the system B can be
obtained by counting the average number of collisions that
occur between particles of A and B:

hSAi �
NANB
N � 1

rt�2� log2e� for rt < 1: (6)

For arbitrary times, we can obtain a lower bound to
the von Neumann entropy using the following sequence
of inequalities: hSAi 
 �hlog2�tr�

2
A�i 
 �log2�htr ~�2

Ai� �

�log2�
P
sA;s0A
hjCsA;s0A j

2i=22NA�. From (5) we notice that the
coherence CsA;s0A only depends on the difference zA � sA �
s0A. And, in particular, the average hjCsA;s0A j

2i depends only
on the number ZA of nonzero entries of zA. Each particle k
in Bwill contribute with a factor 1=2 to the product in (5) if
it has collided with at least one particle of the subset of A
where zA has nonzero entries, whereas a factor one appears
otherwise. Since the probability that no such collision
occurs is pzA � exp��rtZA=N�, each term in the product
will contribute on average with a factor 1=2�1� pzA� �
pzA � �1� exp��rtZA=N��=2. Taking into account com-
binatoric factors we arrive at

hSA�t�i 
 �log2

�
1

2N
XNA
ZA�0

NA
ZA

� �
�1� e�rtZA=�N�1��NB

�
:

Numerical results for NA � 8 and arbitrary system sizes
(NA � NB) show that this lower bound is also a good
estimate and describes well the behavior of the entropic
entanglement. This lower bound can be supplemented by
the upper bound hSAi � NAhS1i. The latter follows from
the subadditivity property of the von Neumann entropy.

In the short- or long-time limits we can simplify the
above expression for the entanglement between two arbi-
trary parts of the Boltzmann gas. For short times
rtNA=�N � 1�< 1

hSA�t�i 
 �log2

�
1�

NANB
4�N � 1�

rt
�
�

NANB
4 ln2�N � 1�

rt;

which is consistent with the exact result (6) for short times.
In the long-time limit all particles will have collided

with all other particles many times and accumulated phases
’kl � 1, independently of the collisional phase per colli-
sion. We refer to such a state as the equilibrium state. For
sufficiently large times, rt� N, every term with ZA > 0 in
2-3
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the sum (7) approaches one (disregarding the binomial
factor) while the ZA � 0 term is equal to two,

hSAi 
 �log2

�
1

2NA
�

1

2NB
�

1

2N
�
NANB

2N
e�rt=�N�1�

�
:

The equilibrium state (rt! 1) has thus the interesting
feature that j�1i is maximally entangled with respect to
all possible bipartitions, i.e., SA � NA, provided that the
total number of particles N in the gas is sufficiently large.
This is a nontrivial statement especially in the case where
both partitions are similarly large. For whatever bipartition
one takes, we find that the expected entropy of entangle-
ment is at most a single bit away from its maximal value:
NA 
 hSAi>NA � 1. This result is in agreement with the
findings of Page [15] and subsequent work studying aver-
age or typical entanglement properties of the whole set of
multipartite pure states. Another remarkable property of
the equilibrium state is that the localizable entanglement
between any pair of particles approaches its maximum
value of one e-bit as N increases [8]. Although the dynam-
ics of the entanglement strongly depends on the particular
type and regime of the semiquantal gas, the equilibrium
state will, in general, be of the form we just described.

To conclude our analysis, we consider the regime of
small collisional phases in the short-time limit. In this
regime, we have to take into account the relative velocity
of the colliding partners. A calculation involving stan-
dard kinetic-theory arguments shows that at short times
(rt� 1) the expected value for the squared modulus of the
coherence is given by the expression

hjC01j
2it � 1� tn�d2

Z
dvpr�v�v�1� jCvj2� � 1� �t;

where pr�v� is the relative velocity distribution and jCvj �
cos���v�=2� is the modulus of the velocity dependent
coherence. For small phases ���1 < 1 the proportionality
factor � can be approximated by

� �
4�2d2n

�4��2�3=2

Z
dvv3e�v

2=4�2
sin2

�
�
2v

�
�

1

4
n

����
�
p

d2 �
2

�
:

Following the previous reasoning we find

hSA�t�i 
 �
NANB
N � 1

log2

�
1�

�
2
t
�
�

�
2 ln2

NANB
N � 1

t: (7)

Thus, by writing � � 1
4

��������
m�
p

d2�2 n������
kBT
p we obtain the rate

of entanglement generation in terms of the thermodynam-
ical variables. Whereas in the regime of large collisional
phases entanglement grows with the rate of collisions ( /����
T
p

), for small collisional phases we find that entanglement
generation is governed by the slow collision events (larger
phases) leading to the opposite behavior (� /

���������
T�1
p

).
Summary.—In this Letter we studied the stochastic gen-

eration of entanglement in a spin gas, in which the classical
kinematics of the particles drives the quantum state of the
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many-body system. The spin gas provides a novel scenario
to study relationships between classical thermodynamical
variables and properties of the quantum state of the system,
such as quantum correlations, rate of entanglement gen-
eration, equilibrium values, and clustering effects. We have
shown how to formalize such systems under quite general
conditions and examined in detail the case of the semi-
quantal Boltzmann gas. We have fully characterized the
bipartite aspects of the entangled N-body equilibrium
state, which is reached at long enough times for most gas
models, showing that maximum entanglement is asymp-
totically attained for all possible bipartitions. The same
formalism can also be used [8] to conduct efficient simu-
lations of other semiquantal gases, such as lattice gases,
with a large number of particles (N 
 105) that exhibit
nontrivial features like non-Markovian dynamics or highly
correlated collision patterns.
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