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Dynamical decoupling pulse sequences have been used to extend coherence times in quantum systems
ever since the discovery of the spin-echo effect. Here we introduce a method of recursively concatenated
dynamical decoupling pulses, designed to overcome both decoherence and operational errors. This is
important for coherent control of quantum systems such as quantum computers. For bounded-strength,
non-Markovian environments, such as for the spin-bath that arises in electron- and nuclear-spin based
solid-state quantum computer proposals, we show that it is strictly advantageous to use concatenated
pulses, as opposed to standard periodic dynamical decoupling pulse sequences. Namely, the concatenated
scheme is both fault tolerant and superpolynomially more efficient, at equal cost. We derive a condition on
the pulse noise level below which concatenation is guaranteed to reduce decoherence.

DOI: 10.1103/PhysRevLett.95.180501 PACS numbers: 03.67.Pp, 02.70.2c, 03.65.Yz, 89.70.+c
In spite of considerable recent progress, coherent control
and quantum information processing (QIP) is still plagued
by the problems associated with controllability of quantum
systems under realistic conditions. The two main obstacles
in any experimental realization of QIP are (i) faulty con-
trols, i.e., control parameters which are limited in range
and precision, and (ii) decoherence errors due to inevitable
system-bath interactions. Nuclear magnetic resonance
(NMR) has been a particularly fertile arena for the devel-
opment of many methods to overcome such problems,
starting with the discovery of the spin-echo effect, and
followed by methods such as refocusing, and composite
pulse sequences [1]. Closely related to the spin-echo effect
and refocusing is the method of dynamical decoupling
(DD) pulses introduced into QIP in order to overcome
decoherence-errors [2,3]. In standard DD one uses a peri-
odic sequence of fast and strong symmetrizing pulses to
reduce the undesired parts of the system-bath interaction
Hamiltonian HSB, causing decoherence. Since DD requires
no encoding overhead, no measurements, and no feedback,
it is an economical alternative to the method of quantum
error correcting codes (QECC) [4–6] in the non-
Markovian regime [7].

Here we introduce concatenated DD (CDD) pulse se-
quences, which have a recursive temporal structure. We
show both numerically and analytically that CDD pulse
sequences have two important advantages over standard,
periodic DD (PDD): (i) Significant fault tolerance to both
random and systematic pulse-control errors (see also
Ref. [8]), (ii) CDD is significantly more efficient at decou-
pling than PDD, at equal switching times and pulse num-
bers. These advantages simplify the requirements of DD
(fast-paced strong pulses) in general, and bring it closer to
utility in QIP as a feedback-free error correction scheme.
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The noisy quantum control problem.—The problem of
faulty controls and decoherence errors in the context of
QIP, as well as other quantum control scenarios [9], can be
formulated as follows. The total Hamiltonian H for the
control-target system (S) coupled to a bath (B) may be
decomposed as: H�HS�IB�IS�HB�HSB, where I is
the identity operator. The component HSB is responsible
for decoherence in S. We focus here on the single-qubit
case, but the generalization to many qubits, with HSB
containing only single-qubit couplings, is straightforward.
We shall interchangeably use X; Y; Z to denote the corre-
sponding Pauli matrices ��, and �0 or I to denote the
identity operator. The system Hamiltonian is HS � Hint

S �
HP, where Hint

S is the intrinsic part (self-Hamiltonian), and
HP is an externally applied, time-dependent control
Hamiltonian. We denote all the uncontrollable time-
independent parts of the total Hamiltonian by He, the
‘‘else’’ Hamiltonian: He :� Hint

S �HB �HSB. We assume
that all operators, except I, are traceless, and that kHek<
1 [10], since in practice there is always an upper energy
cutoff. We consider ‘‘rectangular’’ pulses [piecewise con-
stant HP�t�] for simplicity; pulse shaping can further im-
prove our results [1]. An ideal pulse is the unitary system-
only operator P��� � T exp��i

R
�
0 HP�t�dt�, where T

denotes time ordering and @ � 1 units are used through-
out. A nonideal pulse, UP����T exp��i

R
�
0 fHP�t��

WP�t��He�t�gdt�, includes two sources of errors:
(i) Deviations WP from the intended HP. Such deviations
can be random and/or systematic, generally operator val-
ued. (ii) The presence of He during the pulse.

Periodic DD.—In standard DD one periodically applies
a pulse sequence comprising ideal, zero-width � pulses
representing a ‘‘symmetrizing group’’ G � fPig

jGj�1
i�0

(P0 � I). Let f�0
� T exp��i

R�0
0 He�t�dt� denote the in-
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terpulse interval, i.e., free evolution period, of duration �0.
The effective Hamiltonian H�1�e for the ‘‘symmetrized evo-

lution’’
QjGj�1
i�0 Pyi f�0

Pi �: eijGj�0H
�1�
e is given for a single

cycle by the first-order Magnus expansion: H�1�e 	 Heff �

1
jGj

PjGj�1
i�0 Pyi HPi [2]. This result is the basis of an elegant

group-theoretic approach to DD, which aims to elimi-
nate a given HSB by appropriately choosing G [2,3].
The ‘‘universal decoupling’’ pulse sequence, constructed
from GUD :� f�0; �1; �2; �3g, plays a central role:
it eliminates arbitrary single-qubit errors. For this se-
quence we have, after using Pauli-group identities

(XY � Z and cyclic permutations), p1 :� ei�1H
�1�
e �Q3

i�0 P
y
i f�0

Pi � f�0
Xf�0

Zf�0
Xf�0

Z, where �1 � 4�0.
The idea of dynamical symmetrization has been thor-
oughly analyzed and applied (see, e.g., [7,11] and refer-
ences therein). However, higher-order Magnus terms can in
fact not be ignored, as they produce cumulative decoupling
errors. Moreover, standard PDD is unsuited for dealing
with nonideal pulses [8].

Concatenated DD.—Intuitively, one expects that a pulse
sequence which corrects errors at different levels of reso-
lution can prevent the buildup of errors that plagues PDD;
this intuition is based on the analogy with spatially-con-
catenated QECC (e.g., [5]). With this in mind we introduce
CDD, which due to its temporal recursive structure is
designed to overcome the problems associated with PDD.

Definition 1.—A concatenated universal decoupling
pulse sequence: pn�1 :� pnXpnZpnXpnZ, where p0 


f�0
and n � 0.

Several comments are in order: (i) p1 is the universal
decoupling sequence mentioned above, but one may of
course also concatenate other pulse sequences; (ii) one
can interpret p1 itself as a one-step concatenation: p1 :�
pXYpXY, where pX :� fXfX (f :� f�0

) and Pauli-group
identities have been used. (iii) Any pair, in any order, of
unequal Pauli � pulses can be used instead of X and Z, and
furthermore a cyclic permutation in the definition of p1 is
permissible; (iv) the duration of each sequence is given by
T & �n :� 4n�0 (after applying Pauli-group identities);
(v) the existence of a minimum pulse interval �0 and finite
total experiment time T are practical constraints. This sets
a physical upper limit on the number of possible concate-
nation levels nmax in a given experiment duration;
(iv) pulse sequences with a recursive structure have also
appeared in the NMR literature (e.g., [12]), though not for
the purpose of reducing decoherence on arbitrary input
states. We next present numerical simulations which com-
pare CDD with PDD.

Numerical results for spin-bath models.—For compar-
ing the performance of CDD vs PDD, we have chosen an
important example of solid-state decoherence: a spin-bath
environment [13]. This applies, e.g., to spectral diffusion of
an electron-spin qubit due to exchange coupling with
nuclear-spin impurities [14], e.g., in semiconductor quan-
tum dots [15], or donor atom nuclear spins in Si [16].
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Specifically, we have performed numerically exact simu-
lations for a model of a single qubit coupled to a linear
spin-chain via a Heisenberg Hamiltonian: He � !S�

z
1 �

!B�
PK
a�2 �

z
a� �

PK
a>b�1 jab ~�a � ~�b. The system spin-

qubit is labeled 1; the second sum represents the
Heisenberg coupling of all spins to one another, with jab �
j exp���dab�, where � is a constant and dab is the distance
between spins. Such exponentially decaying exchange in-
teractions are typical of spin-coupled quantum dots [15].
The initial state is a random product state for the system
qubit and the environment. The goal of DD in our setting is
to minimize (the log of) the ‘‘lack of purity’’ of the system
qubit, l 
 log10�1� Tr��2

S��, where �S is the system den-
sity matrix obtained by tracing over the environment basis.
At given CDD concatenation level n we also implement
PDD by using the same minimum pulse interval �0 as in
CDD and the same total number of pulses N & 4n; this
ensures a fair comparison. In all our simulations we have
set the total pulse sequence duration T � 1, in units such
that �!ST;!BT; �dj;j�1� � �2; 1; 0:7�. Longer pulse se-
quences correspond to shorter pulse intervals �0.
Qualitatively, the number of bath spins K had no effect
in the tested range 2  K  7, while quantitatively, and as
expected, decoherence rises with K. DD pulses were im-
plemented by switching HP � h��1 , � 2 fx; zg, on and off
for a finite duration � > 0; note that n  nmax�T; ��. We
define the pulse jitter WP as an additive noise contribution
to HP. It is represented as W�

P � ~r� � ~�1, with ~r� being a
vector of random (uniformly distributed) coefficients. We
distinguish between systematic (W�

P fixed throughout the
pulse sequence, but different for each �) and random (W�

P
changing from pulse to pulse) errors.

Our simulation results, shown in Figs. 1–3, compare
CDD and PDD as a function of coupling strength, relative
jitter magnitude, and number of pulses. Figure 1, left,
compares CDD and PDD at a fixed number of pulses.
CDD outperforms PDD in the random jitter case with noise
levels of up to almost 10%. Figure 1, right, shows the
performance of CDD as a function of jitter magnitude
and concatenation level: the improvement is systematic
as a function of the number of pulses used. Figure 2 con-
trasts CDD and PDD in the jitter-free case, as a function of
system-bath coupling j. As predicted in the analytical
treatment below, CDD offers improvement compared to
PDD in decoherence reduction over a wide range of j
values. Figure 3 compares CDD and PDD as a function
of systematic jitter. Superior performance of CDD is par-
ticularly apparent. These results establish the advantage of
CDD over PDD in a model of significant practical interest,
subject to a wide range of experimentally relevant errors.
We now proceed to an analytical treatment.

Imperfect decoupling.—Consider DD pulse sequences
composed of ideal pulses. Let us partition He as He �

H?X �H
k
X, where H?X � Y � By � Z � Bz and HkX � X �

Bx �HB. The super/subscripts ?; X and k; X correspond
to terms that anticommute and commute with X � IB,
1-2
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FIG. 3 (color online). Left: CDD performance as a function of
concatenation level and systematic jitter. The pulse-width � �
10�4T, number of bath spins K � 5, jT � 15:0, averaged over
7–80 realizations (more realizations for higher n). Right: CDD
(solid line) vs PDD (dot-dashed line) as a function of systematic
jitter for n � 5, � � 10�5T, K � 5, j�0 � 3:0, averaged over
14–80 realizations. The dashed line is pulse-free evolution.
CDD performance is unaffected up to �20% jitter level.
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FIG. 1 (color online). Left: Performance of CDD (solid line,
n � 4) vs PDD (dot-dashed line) as a function of random jitter
fraction jwPj :� kWPk=kHPk, with pulse-width � � 10�5T,
coupling strength j � :2=T (T is the total evolution time), and
number of bath spins K � 2, averaged over 90 jitter realizations.
For comparison, the horizontal dashed line corresponds to free
evolution. Right: CDD as a function of random jitter fraction
jwPj and concatenation level n. The vertical axis denotes l �
log10�1� purity� here and in Figs. 2 and 3.
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respectively. Thus the effect of pX � fXfX in PDD can be
viewed as a projection of HSB onto the component ‘‘par-
allel’’ to X, i.e., HkX. For the Y pulses in p1 � pXYpXY we
can similarly write HkX � H?Y �H

k
Y , where ?; Y ( k; Y)

denotes anticommutation (commutation) with Y, whence
HkY � HB. Then the role of the Y pulses is to project HkX
onto HkY , which eliminates HSB altogether, i.e., transforms
He � HSB �HB into a ‘‘pure-bath’’ operator HB. This
geometrical picture of two successive projections is illus-
trated in Fig. 4(a). However, these projections are imper-
fect in practice due to second-order Magnus errors. Indeed,
instead of a sequence such as fXfX, one has, after pulse
Pi�X;Y , IE;i :� exp��i��Hki �H

?
i �� exp��i��Hki �H

?
i ��,

where He � Hki �H
?
i , and we have accounted for the

sign flipping due to Pi. Using the Baker-Hausdorff
expansion formula, we approximate the total unitary
evolution as IE;i � exp��i�2��Heff;i �O��

3
i ��, where

Heff;i :�DPi����He� � e�i�H
?
i =2Hki e

i�H?i =2, where �3
i :�

�3kH?i k
2kHki k, and it is assumed that, since kHek<1,

one can pick � such that �i � 1. The mapping DPi����He�

clearly has a geometric interpretation as a projection that
eliminates H?i , followed by a rotation generated by H?i .
This rotation produces extra system-bath terms besidesHki ,
hence imperfect DD. This is illustrated in Fig. 4(b): in the
first-order Magnus approximation the transition from H�2�SB
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FIG. 2 (color online). CDD (left) and PDD (right), as a func-
tion of system-bath coupling j; pulse width � � 10�4T, number
of bath spins K � 5, and without jitter (WP � 0). Note the l-axis
scale difference between CDD and PDD.
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to H�3�SB suffices to eliminate HSB, i.e., H�3�SB � 0. But in the
presence of second-order Magnus errors H�3�SB � 0. The
difference between CDD and PDD is precisely in the
manner in which this error is handled: in PDD the H�3�SB
error accumulates over time since the same procedure is
simply repeated periodically. However, in CDD the process
of projection� rotation is continued at every level of con-
catenation, as suggested in Fig. 4(b) (red arrow above
H�3�SB). In CDD, H�m�SB is shrunk with increasing m, in a
manner we next quantify.

Convergence of CDD in the limit of zero-width pulses.—
Decoupling induces a mapping on the components of He.
For a single qubit, writing He �

P
��x;y;z�� � B�, we

have He�
p1
H�1�e �

P
��� � B

�1�
� , where a second-order

Magnus expansion yields: B�1�0 � B0, B�1�x � i�0�B0; Bx�,
B�1�y � i�0

1
2 ��B0; By� � ifBx; Bzg�, B

�1�
z � 0. Let us define

� :� kB0k and J :� max�kBXk; kBYk; kBZk�, where we
assume J < �<1. Comparing with the model we have
used numerically, J � O��� and � � O�!B�. It is possible
to show that a concatenated pulse sequence pn
can still be consistently described by a second-order
Magnus expansion at all levels of concatenation, pro-
vided the (sufficient) condition �n�� 1 is satisfied [17].
We can then derive the recursive mapping relations
X

XH

X Xf f

Y YX Xp p

X

XH

X Xf f

Y YX Xp p
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SBH(3)

SBH
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FIG. 4 (color online). Projections involved in DD. (a) Perfect
cancellation in first-order Magnus case. (b) Extra rotation in-
duced by higher-order Magnus terms, and the effect of concat-
enation.
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for H�n�1�
e �

pn
H�n�e �

P
��� � B

�n�
� ,B�n�0�

0 � B0, B�n�1�
x �

�i�n�1��B0;B
�n�1�
x �, B�n�2�

y � 1
2�i�n�1��B0;B

�n�1�
y �, B�n�1�

z �

0. The propagator corresponding to the whole sequence is
exp��i�nH

�n�
e �, which in the limit of ideal performance

reduces to the identity operator. These results for B�n�� allow
us to study the convergence of CDD, and bound the success
of the DD procedure, as measured in terms of the fidelity
(state overlap between the ideal and the decoupled evolu-
tion). This fidelity is given by [6]

fn 	 1� k�n eH�n�e k2 	 1� ��nh
�n��2 �: 1� ��CDD�

2;

(1)

where ~H is the system-traceless part of H, and h�n� :�

maxfkB�n�x k; kB
�n�
y kg. We find that

�CDD  ��T=N
1=2�n�JT�; (2)

where T � N�0 & �n � 4n�0 is the total sequence dura-
tion, comprising N pulse intervals. In contrast, �PDD �

Th�1� yields

�PDD � 2���0��JT� � 2��T=N��JT�: (3)

Note that forN � 4, �CDD � �PDD as expected. There is a
physical upper limit on the number of concatenation levels,
imposed by the condition��n � 1. Using this condition in
the form� � c=T, where c is some small constant (such as
0.1), and fixing the value of �, we can back out an upper
concatenation level nmax � �log4

��0

c ; inserting this into
Eq. (2) we have �CDD  �c��0�

�1=2log4���0=c��JT�. We can
now compare the CDD and PDD bounds in term of the final
fidelity:

1� fCDD

1� fPDD

�c��0�

�log4���0=c�

4���0�
2 !

��0!0
0: (4)

This key result shows that CDD converges superpolyno-
mially faster to zero in terms of the (physically relevant)
parameter ��0, at fixed pulse sequence duration. However,
it is important to emphasize that our bound on �CDD is
unlikely to be very tight, since we have been very con-
servative in our estimates (e.g., in applying norm inequal-
ities and estimating convergence domains). Indeed, in our
simulations (above) ��n 	 2, which is beyond our con-
servatively obtained convergence domain.

Finite width pulses.—We now briefly consider the
more realistic scenario of rectangular pulses
T exp��i

R
�
0 fHP�t� �He�t�gdt� of width �� �0. In this

case we can derive a modified form of the condition
��n � 1, required for consistency (of using a second-
order Magnus expansion at all levels of concatenation)
[17]:

c�n�� d�=�n � 1; (5)

where c; d� 1 are pulse sequence-specific numerical fac-
tors. The consistency requirement (5) validates the analysis
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of convergence of CDD for � � 0, and we can reproduce
the advantage of CDD over PDD for � � 0 [manifest in
Eq. (4)]. As expected Eq. (5) imposes a more demanding
condition on the total duration �n, at fixed bath strength �.
While Eq. (5) cannot be called a threshold condition (in
analogy to the threshold in QEC), since it depends on the
total sequence duration, it does provide a useful sufficient
condition for convergence of a finite pulse-width CDD
sequence, and introduces the concept of error per gate
which is fundamental in fault-tolerant QEC [5,6].

Conclusions and outlook.—We have shown that con-
catenated DD pulses offer superior performance to stan-
dard, periodic DD, over a range of experimentally relevant
parameters, such as system-bath coupling strength, and
random as well as systematic control errors. Here we
have addressed the preservation of arbitrary quantum
states. Quantum computation can in principle be per-
formed, using CDD, over error-corrected encoded qubits
by choosing the DD pulses as the generators of a stabilizer
QECC, and the quantum logic operations as the corre-
sponding normalizer [18,19].
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