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Calculation of the One- and Two-Loop Lamb Shift for Arbitrary Excited Hydrogenic States
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General expressions for quantum electrodynamic corrections to the one-loop self-energy [of order
��Z��6] and for the two-loop Lamb shift [of order �2�Z��6] are derived. The latter includes all diagrams
with closed fermion loops. The general results are valid for arbitrary excited non-S hydrogenic states and
for the normalized Lamb shift difference of S states, defined as �n � n3�E�nS� ��E�1S�. We present
numerical results for one-loop and two-loop corrections for excited S, P, and D states. In particular, the
normalized Lamb shift difference of S states is calculated with an uncertainty of order 0.1 kHz.
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TABLE I. Values of the nonlogarithmic self-energy correction
A60 (‘‘relativistic Bethe logarithm’’) for higher excited S states.

n A60�nS� n A60�nS�

1 �30:924 149 46�1� 5 �31:455 393�1�
2 �31:840 465 09�1� 6 �31:375 130�1�
3 �31:702 501�1� 7 �31:313 224�1�
4 �31:561 922�1� 8 �31:264 257�1�
The theory of quantum electrodynamics, when applied
to the hydrogen atom and combined with accurate mea-
surements [1,2], leads to the most accurately determined
physical constants today [3] and to accurate predictions for
transition frequencies. Of crucial importance are higher-
order corrections to the bound-state energies, which in-
volve both purely relativistic atomic-physics effects and
are mixed with the quantum electrodynamic (QED) cor-
rections. In general, this leads to a double expansion for the
energy shifts, both in terms of the QED coupling � (the
fine-structure constant) and the nuclear charge number Z.

As is well known, the leading one-loop energy shifts
(due to self-energy and vacuum polarization) in hydrogen-
like systems are of order ��Z��4 in units of the electron
mass. Analytic calculations for higher excited states in the
order ��Z��6 are extremely demanding. For non-S states,
the ��Z��6 corrections have been obtained recently [4].
However, excited S states are very important for spectros-
copy, and the corresponding gap in our knowledge is filled
in the current Letter (see Table I). Regarding the two-loop
correction, complete results for the �2�Z��4 effect were
obtained in 1970 (see Ref. [5]). Here, we derive general
expressions which allow the determination of the entire
two-loop �2�Z��6 correction, for all non-S hydrogenic
states and the normalized difference �n � n3�E�nS� �
�E�1S�, including the nonlogarithmic term. Together
with other available analytic [6,7] and numerical calcula-
tions for the 1S state [8], our results allow for a much
improved understanding of the higher-order two-loop cor-
rections for general excited hydrogenic states, and pave the
way for an improved determination of fundamental con-
stants from hydrogen spectroscopy.

The one-loop bound-state self-energy, for the states
under investigation here, can be written as

��1�E �
��Z��4

�n3 fA40 � �Z��
2�A61 ln��Z���2� � A60�g;

where the indices of the coefficients indicate the power of
Z� and the power of the logarithm, respectively. We work
in D � 4� 2� spacetime dimensions, and the dimension
05=95(18)=180404(4)$23.00 18040
of space is d � 3� 2�. Units are chosen so that @ � c �
�0 � 1, and the electron mass is unity. A nonrelativistic,
‘‘Bethe-style’’ [9] calculation of the contribution due to
ultrasoft photons, in the dipole approximation, leads to a
dimensionally regularized energy shift EL0,
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where lnk0 �
n3

2�Z��4 hp
i�H� E� ln�2jH� Ej=�Z��2�pii is

the Bethe logarithm, and �d�r� � ~r2V=�4�� is a
d-dimensional Dirac delta function obtained via the action
of the Laplacian on the d-dimensional Coulomb potential
V�r� � �Z�r2�d���d2� 1��1�d=2�. All matrix elements
h
i are to be evaluated with regard to the reference state,
as given by a nonrelativistic (Schrödinger-Pauli) wave
function, and the summation convention is used throughout
this Letter.

Following [4,10,11], we now consider corrections due to
the relativistic Hamiltonian, the quadrupole term, and the
relativistic and retardation corrections to the current. The
relativistic correction to the Hamiltonian is

HR � �
~p4
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Here, �ij � 1
2i ��

i; �j�. The resulting, dimensionally regu-
larized, correction to the Bethe logarithm is
4-1 © 2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.95.180404


PRL 95, 180404 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
28 OCTOBER 2005
EL1 �
�
�
�Z��6

n3 �1 �
�

3�

�
1

2"
�

5

6
� L�Z��

�

	

�
1

8
~r4V �

i

4
�ijpi ~r2Vpj � 2HR

�G ~r2V
�
; (3)

where L�Z��� ln�12�Z��
�2�, and �G�1=�E�H�0 is the re-

duced Green function; �1 is a generalized Bethe logarithm,
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We temporarily restore the reference state� in the notation
of the matrix element, and the sums over n and m include
both the discrete as well as the continuous part of the
spectrum. The argument of the logarithm in �1 is ln�jH �
Ej=�Z��2�, not ln�2jH � Ej=�Z��2� as in lnk0, and this fact
is important for the precise definition of�1, and of all other
generalized Bethe logarithms in the following.

In the dimensional scheme, the quadrupole correction
EL2, which was denoted as Fnq in former work [10,11], is
found to be expressible as EL2 �D2 �F 2, where
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and F 2 contains the generalized Bethe logarithm �2,
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Here, ~n is a three-dimensional unit vector, and we integrate
over the entire solid angle � ~n. Throughout this Letter, ~r2

and ~r4 are understood to exclusively act on the quantity
immediately following the operator, i.e., ~hr

2
V ~p2i �

h� ~r2V� ~p2i, h ~r2VGHRi � h�
~r2V�GHRi, etc.

The correction EL3 to the transition current reads EL3 �
D3 �F 3, where F 3 � ��Z��6�3=�n

3 contains the gen-
eralized Bethe logarithm �3, and
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Here, ji � pi ~p2 � 1
2�

ijrjV, and ri � @=@ri denotes the
derivative with respect to the ith Cartesian coordinate. The
divergences (in ") in the corrections to the Bethe logarithm
are compensated by high-energy virtual photons, which in
nonrelativistic QED (NRQED) are given by effective op-
erators. From a generalized Dirac equation (see Chap. 7 of
Ref. [12]), one easily obtains the effective one-loop poten-
tial
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which in leading order gives rise to the correction h��1�Vi.
This correction is a contribution to the middle-energy part
EM, which originates from high-energy virtual photons,
with electron momenta of order Z�. The corrections of
relative order �Z��2 to h��1�Vi involve relativistic correc-
tions to the wave function and to the operators, and a two-
Coulomb-vertex scattering amplitude. The sum is
EM�h�
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The complete one-loop result ��1�E � EL0 � EL1 � EL2 � EL3 � EM reads
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The matrix elements in this result can be evaluated using standard techniques. In terms of the notation of Ref. [4], we have
L �

P3
i�1 �i. Our general result (7), evaluated for hydrogenic states, reproduces the known logarithmic term A61, and is

consistent with all formulas reported for the nonlogarithmic term in Eqs. (10) and (12) of Ref. [4]. The evaluation of L is a
demanding numerical calculation, and numerical values for non-S states have been presented in Table I of Ref. [4]. Taking
advantage of the result [10] for 1S and the validity of Eq. (7) for the nS� 1S difference, we can now proceed to indicate
results for the nonlogarithmic term A60 for nS states, an evaluation made possible by our generalized NRQED approach
(see Table I).

A generalization of our NRQED approach leads to the following general result for the �2�Z��6 term of the complete
two-loop Lamb shift (including all diagrams with closed fermion loops, see Fig. 1),
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The leading �2�Z��4 term, given by the B40 coefficient, is
well known and therefore not included here (for a review
see, e.g., Appendix A of Ref. [3]). The above expression is
valid for the P, D states, and for the normalized difference
�n of S states. The quantity N is defined in terms of the
notation adopted in Refs. [6,13], and the two-loop Bethe
logarithm bL is defined in Refs. [7,14]. Although bL has
been determined numerically only for S states (see
Ref. [14]), it represents a well-defined quantity for all
18040
hydrogenic states. The logarithmic sum �4 is given by
Eq. (4), with the replacement HR !

1
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ijriVpj. Finally,
we have
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Evaluating the general expression (8) for P states, we
confirm that B62�nP� �
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Numerical values for N�nP� can be found in Eq. (17) of [13]. Regarding the nonlogarithmic term B60, we fully con-
firm results for the fine-structure difference of P states [15]. A further important conclusion to be drawn from Eq. (8) is that
all logarithmic two-loop terms of order �2�Z��6 vanish for states with orbital angular momentum l � 2.

We have also verified that the two-loop result (8) is consistent with the normalized S-state difference �n for the
logarithmic terms B62 and B61, as derived in Ref. [6] (using a completely different method). Evaluating all matrix elements
in Eq. (8), we are now in the position to obtain the n dependence of the nonlogarithmic term, which we write as B60�nS� �
B60�1S� � bL�nS� � bL�1S� � A�n�, where A�n� is the additional contribution beyond the n dependence of the two-loop
Bethe logarithm. The result for A�n� is
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FIG. 1. Two-loop Feynman diagrams for the Lamb shift. The
bound-electron propagator is denoted by a double line.

PRL 95, 180404 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
28 OCTOBER 2005
Numerically, A�n� is found to be much smaller than
bL�nS� � bL�1S�, which implies that the main contribution
to B60�nS� � B60�1S� is exclusively due to the two-loop
Bethe logarithm. As an example, we consider A�5� �
0:370 042 and B60�5S� � B60�1S� � 21:2�1:1�, where the
error is due to the numerical uncertainty of the two-loop
Bethe logarithm bL�5S� (see Ref. [14]).

The test of standard model theories and the determina-
tion of fundamental constants (specifically, of the Rydberg
constant and of the electron mass) provide the main moti-
vations for carrying out the QED calculations in ever
higher orders of approximation. Recently, our knowledge
of the ground-state Lamb shift has been improved by a
fully numerical calculation of the two-loop self-energy [8].
However, because of the structure of the hydrogen spec-
trum, the decisive quantity for the determination of the
Rydberg constant from spectroscopic data is the normal-
TABLE II. Theoretical values of the normalized Lamb-shift
difference �n � n3�E�nS� ��E�1S�, based on the results re-
ported in this Letter [see Eq. (11)]. Units are kHz.

n �n n �n

2 187 225.70(5) 12 279 988.60(10)
3 235 070.90(7) 13 280 529.77(10)
4 254 419.32(8) 14 280 962.77(10)
5 264 154.03(9) 15 281 314.61(10)
6 269 738.49(9) 16 281 604.34(11)
7 273 237.83(9) 17 281 845.77(11)
8 275 574.90(10) 18 282 049.05(11)
9 277 212.89(10) 19 282 221.81(11)

10 278 405.21(10) 20 282 369.85(11)
11 279 300.01(10) 21 282 497.67(11)

18040
ized difference �n of the nS� 1S Lamb shift. Elucidating
discussions regarding the latter point can be found near
Eqs. (2) and (3) of Ref. [16], and in Appendix A of Ref. [3].
Accurate theoretical values for �n can be inferred from the
results reported here and are compiled in Table II. The
Rydberg constant is currently known to a relative accuracy
of 6:6	 10�12, limited essentially by the experimental
accuracy of the 2S� 8D and 2S� 12D measurements
(see Table V of [3]). Using the improved theory as pre-
sented in this Letter, it will become possible to determine
the Rydberg constant to an accuracy on the level of 10�14,
provided the ongoing experiments concerning the hydro-
gen 1S� 3S transition [17,18] reach a sub-kHz level of
accuracy.
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