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Dynamical Instability and Domain Formation in a Spin-1 Bose-Einstein Condensate
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We interpret the recently observed spatial domain formation in spin-1 atomic condensates as a result of
dynamical instability. Within the mean field theory, a homogeneous condensate is dynamically unstable
(stable) for ferromagnetic (antiferromagnetic) atomic interactions. We find that this dynamical instability
naturally leads to spontaneous domain formation as observed in several recent experiments for con-
densates with rather small numbers of atoms. For trapped condensates, our numerical simulations
compare quantitatively to the experimental results, thus largely confirming the physical insight from
our analysis of the homogeneous case.
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Spatial domains or pattern formation is a common fea-
ture of nonlinear dynamics in extended systems. It has been
actively researched in nonlinear optics [1], classical fluids
[2], granular materials [3], and recently in atomic Bose-
Einstein condensates [4–10]. It is generally understood
that the unstable modes of a dynamically unstable system
can grow exponentially and eventually lead to the appear-
ance of spatial domain structures that last for a long time.

Many earlier studies have suggested interesting mecha-
nisms for spontaneous domain formation in atomic con-
densates [4–7]. Most focus on the single- or two-
component condensates, where the number(s) of atoms
for each component is conserved. The dynamical instabil-
ity due to attractive atomic interactions is the most promi-
nent among all proposed scenarios for domain formation
[4,5,8]. The attractive interaction in a single-component
condensate is also believed to be responsible for the for-
mation of a train of solitons, consistent with the fact that it
is dynamically unstable [4]. For a two-component conden-
sate, again it is found that an effective attractive interaction
is responsible for the dynamical instability and domain
formation [5,8,9].

Several groups have also studied three-component, or
spin-1, condensates (F � 1), which are distinct as the spin
mixing interaction [6,10,11] allows for exchanging atoms
among spin components 2jmF � 0i $ jmF � �1i �
jmF � �1i (hereafter as j0i, j�i, and j�i). The number
of atoms for each component therefore can change, but the
total number of atoms and the system magnetization are
conserved. Significant interest now exists for spin-1 con-
densates because of the recent progress from several ex-
perimental groups [12], in particular, the observation of
spontaneous domain formation in 87Rb condensates [13].
Robins et al. were among the first to study dynamical
instability in a spin-1 condensate [10]. They discovered a
particular type of stationary state dynamically unstable for
ferromagnetic interactions, evidenced by the sudden col-
lapse when propagated with Gross-Pitaevskii (GP) equa-
tions, presumably resulting from the amplification of
numerical discretization errors. Through extensive numeri-
cal simulations, Saito and Ueda also investigated very
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recently the spontaneous multidomain formation induced
by the dynamical instability in a spin-1 condensate with
ferromagnetic interactions [11]. A clear picture, however,
is still lacking, as indicated by the general lack of com-
parisons with experimental reports. Our work aims at
providing a complete understanding for domain formation
in a spin-1 condensate.

To begin with, we consider a homogeneous condensate
at an off-equilibrium state initially. For example, a spin-1
condensate in the ground state at a certain nonzero mag-
netic (B) field for time t < 0 will become off-equilibrium
when the external B field is changed for t � 0. This causes
the spin-1 condensate to collectively oscillate analogous to
a nonrigid pendulum, as we recently showed [13,14]. In
addition, we assume the condensate size is much larger
than the spin healing length at least in one direction so that
domains may be formed. Within our mean field descrip-
tion, the evolution of a spin-1 condensate is described by
the coupled GP equations [15]
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where H � ��@2=2m	r2 � Vext � c0n, �j is the jth spin
component condensate wave function, and nj � j�jj

2.
c0 � 4�@2�a0 � 2a2	=3m and c2 � 4�@2�a2 � a0	=3m,
with a0 and a2 the scattering lengths for the two colliding
atoms in the symmetric channels of total spin 0 and 2,
respectively. The interaction is ferromagnetic (antiferro-
magnetic) if c2 < 0 (> 0).

Let �j �
�����njp ei�j and define a relative phase � � �� �

�� � 2�0; Eq. (1) simplifies to the following [14]:
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due to the conservation of atomic density (n � n� � n0 �
n�) and the magnetization (m � n� � n�). Equations (2)
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defines an energy conserving dynamics, with the effective
energy per unit of volume given by
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We note that Eq. (2) for a homogeneous condensate differs
from a trapped one even under single spatial mode ap-
proximation despite sharing the same dynamical Eq. (2).

Within the mean field approximation, the average spin of
a condensate ~f � fxx̂� fyŷ�mẑ, where fj � hFji with
Fx;y;z being the spin-1 matrices, is also conserved in addi-
tion to the conservations of n and m [16]. The energy
functional Eq. (3) thus becomes E � 1

2 c0n2 � 1
2 c2f2, if

f2 � f2
x � f

2
y �m

2. We note that the mean field theory
model cannot be applied to extreme cases such as N0 � 0
and N0 � N, where quantum effects are important.

We adopt three approaches to study dynamical stability
of the off-equilibrium collective oscillations of a conden-
sate: the effective potential method, the Bogoliubov
method, and direct numerical simulations. By going into
a rotating frame, an entire orbit reduces to a stationary
point in the phase space [14]. The effective potential then
becomes F � �c0=2	n2 � �c2=2	�m2 � f2

x � f2
y	 ��n�
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�m� �xfx � �yfy, where parameters f�;�; �x; �yg �
fc0n; c2m; c2fx; c2fyg define the rotating frame and are
obtained through

@F
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� 0;

@F
@m
� 0;

@F
@fx
� 0;

@F
@fy
� 0:

Our system is dynamically stable if its Hessian matrix of
F with respect to fn;m; fx; fyg is positive definite and
dynamically unstable if the Hessian matrix has any nega-
tive eigenvalue. It is easy to check that the eigenvalues of
the Hessian matrix are fc0; c2; c2; c2g. Thus, an antiferro-
magnetically interacting spin-1 condensate is dynamically
stable, while a ferromagnetically interacting one is dy-
namically unstable since c2 < 0.

We next employ the Bogoliubov transformation to find
out the corresponding unstable modes. Starting from the
stationary point in the rotating frame as found above, the
equation of motion for collective excitations can be cast in
a matrix form [17] as M 
 ~x � @!~x, with a vector ~x �
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T . ��j and ���j de-
note the deviations from the stationary point, and the
associated matrix is
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2k2=2m is kinetic energy of the collective excitation mode with wave vector k.

The eigenfrequencies of the Bogoliubov excitations are obtained from the characteristic equation det�M� @!I	 � 0,
explicitly given by

�2cs"k � "
2
k � c

2
s f2 � �@!	2
��"2

k � �@!	
2	�2cs"k � "

2
k � �@!	

2	 � 2cn"k�"
2
k � 2cs"k�1� f2	 � �@!	2	
 � 0; (4)
with cn � c0n, cs � c2n, and f � f=n. The frequencies
are then given by
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The corresponding modes are termed as density modes
(solid lines), spin modes (dotted lines), and quadrupolar
spin modes (dashed lines as in Fig. 1) by Ho [15].
Figures 1(a) and 1(b) show the real and imaginary parts
of the typical dispersion relation for a 87Rb spin-1 conden-
sate [18], respectively. All frequencies are real for an
antiferromagnetically interacting (e.g., 23Na) condensate.

Our analysis here parallels that of Refs. [8,9] for a two-
component condensate. We find two interesting features in
Fig. 1(b). One of them at k� is the most unstable mode at
the maximum imaginary frequency; it determines short
time behavior such as the time scale for domains to
emerge. The other is the largest wave vector km with an
(infinitesimal) imaginary frequency which determines the
long time behavior such as the final domain size. From
Eq. (5), we find the time scale for the emergence of a
3-2
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FIG. 2 (color online). Surfaces of dE=dm � 0 (top) and the
cross section at � � 0 (bottom). The plus signs denote
dE=dm> 0 and the minus signs denote dE=dm < 0.
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FIG. 1 (color online). Real part (a) and imaginary part (b) of a
typical Bogoliubov spectrum for a spin-1 condensate with fer-
romagnetic interaction. Panel (c) shows the smallest wavelength
of a homogeneous spin-1 87Rb condensate at n � 1:9�
1014 cm�3.
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It is typically of the order of spin healing length.
Figure 1(c) displays the f dependence of �m at n � 1:9�
1014 cm�3 for a homogeneous 87Rb spin-1 condensate. For
the domains to form, a condensate has to be larger than �m,
at least in one direction.

We note that the spin domain formation as discussed
here is different from striation patterns as observed in
(antiferromagnetic) 23Na condensates. The stripe patterns
arise from interplay of an external B field, a field gradient,
and immiscibility among different spin components [6].
No domains were observed in Stenger et al.’s experiment
[6] at negligible B fields where the j�i and j�i compo-
nents coexist. At finite values of B fields, phase separation
between the j0i and the j�i components occurs [19]. In
Miesner et al. and Stamper-Kurn et al.’s experiments [6],
only two spin components were involved due to the rela-
tively large bias B field (� 15 G).

Our analysis shows that the formation of spin domains is
a direct consequence of dynamic instability for a conden-
sate with ferromagnetic interactions. To provide a clearer
physical picture for domain formation, we now work in the
lab frame. We focus on dE=dm, which in fact calibrates the
formation of the spin domain. We find

dE
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� c2m

�
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n0 cos���������������������������������
�n� n0	

2 �m2
p

�
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Figure 2 shows the surfaces where the above first order
derivative is zero. The region below the saddle surface in
Fig. 2 of an orbit is unstable if c2 < 0. Here the meaning of
‘‘unstable’’ is generalized, referring to the dynamical prop-
erty where the local magnetization tends to deviate further
from m � 0. For example, in the lower right allowed
region of dE=dm< 0, �m> 0 is required to lower the
local energy E � E�m	 � �dE=dm	�m. Thus, m tends to
increase. Similarly, the lower left allowed region would
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make m decrease. The combined effect is dynamically
unstable orbits, separation of j�i and j�i components,
and the eventual formation of spin domains.

For antiferromagnetic interactions (c2 > 0), � usually
oscillates around �. Thus, dE=dm> 0 for m> 0 and
dE=dm< 0 for m< 0. So the magnetization always oscil-
lates around zero, and no domain forms. This coincides
with the findings of the dynamical stability analysis for an
antiferromagnetically interacting condensate.

Finally, we perform numerical simulations of Eq. (1) to
confirm the mechanism of dynamical instability-induced
spin domain formation. The initial conditions are as in the
experiment [13], with 87Rb condensates [N0�0	=N�0:744,
��0	 � 0, for the ground state of N � 2:0� 105 at B �
0:3 G andM�0], in a trap Vext�~r	� �m=2	�!2

xx
2�!2

yy
2�

!2
zz2	, with !x�!y��2�	240 Hz and !z � �2�	24 Hz.

In one of the simulations, we intentionally include additive
small white noise (�1:0� 10�5), although still much
larger than numerical errors [20] during the propagation.
We find that it takes a shorter time for the j�i and j�i
components to separate when white noise is included.
Figure 3 shows the evolution of axial density distributions.
Phase separation between the j�i and j�i components is
seen, accompanied by the formation of domains. This
proves again that dynamical instability causes the forma-
tion of domains. The domain width (an upper limit),

as estimated from �m � h=
�������������������������������������������������
2mjc2jhni�1�

�������������
1� f2
p

	
q

�

15 �m, is consistent with both simulations and experimen-
tal observations [13].
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FIG. 3 (color online). Typical evolutions for spin domain for-
mation in a 87Rb condensate. The initial state is the ground state
at B � 0:3 G. The B field is then set to zero and small white
noises are added throughout the evolution. The left contour plot
is for the j�i component. The right column shows the density
distribution of all three components at times t � 0; 160; 320
(1=!z). Solid, dashed-dotted, and dashed lines denote, respec-
tively, the j�i, j0i, and j�i components. Dotted lines are for the
total density. The axial density is nz �

RP
jj�jj

22�rdr. az ����������������
@=m!z

p
’ 2:2 �m and the average condensate density is

�1:9� 1014 cm�3.
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In a spinor condensate, spin wave excitations normally
refer to dynamically stable (or relatively more stable)
collective modes. Once excited, they lead to coherent
cyclic dynamics in both spatial and temporal dimensions.
Spin domains, on the other hand, refer to unstable modes,
with a fixed pattern in the long time limit.

In conclusion, we have presented a systematic study of
dynamical stability and the accompanied mechanism for
domain formation in a spin-1 condensate. Our results
affirm that a ferromagnetically interacting condensate is
dynamically unstable and evolves spontaneously into mul-
tidomain structures, contrary to dynamically stable anti-
ferromagnetic condensates. Our work provides a clear
physical picture for recently observed spontaneous domain
formations in spin-1 condensates [13].
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