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Microviscoelastic Moduli of Biomimetic Cell Envelopes
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Bioanalogue models of composite cell envelopes were designed by electrostatically driven self-
assembly of actin shells inside giant vesicles. Viscoelastic relaxation moduli were measured between
0.03 and 20 s as a function of actin density by magnetic bead microrheometry. The shear relaxation spectra
exhibited by the composite shells compare well with those of natural cell envelopes and bulk entangled
actin networks. Absolute value of the shear modulus was measured for the first time by deformation field
mapping. Shear and bending moduli agree well with values obtained by bead fluctuations analysis.
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The mechanical behavior of many cells is determined to
a large extent by the cell envelope, a composite shell
formed by the lipid-protein bilayer (the plasma mem-
brane), and the associated actin-based cytoskeleton, the
actin cortex. Judged from micromechanical studies, it be-
haves as a linear viscoelastic shell [1]. The time dependent
cell surface elasticity and viscosity determine the dynam-
ics of cellular processes associated with cellular shape
changes, such as cell division [2], adhesion or pseudopod
formation [3]. They also determine the time scales over
which long range mechanical stresses may be maintained
within the cortex before they relax by cytoskeletal reor-
ganizations. Thus, whether the cells behave as tensegrity
structures depends on the time scale of the processes
considered [4]. A powerful tool to study the viscoelastic
behavior of cell envelopes and complex fluids is magnetic
bead microrheometry [1,5]. Absolute values of the visco-
elastic moduli, surface shear moduli, and viscosities of cell
surfaces can be measured, and changes of these parameters
by cell stimulating agents can be monitored in real time.
Comparison of viscoelastic parameters of cell surfaces and
in vitro networks of actin [6,7] can yield insight into the
structural features of the actin cortex (e.g., mesh size and
the degree of cross-linking) [1].

We designed mechanical models of cell surfaces by self-
assembly of an actin shell beneath the inner leaflet of giant
vesicles of typical diameter of 10 �m [8,9]. Contrary to
previous studies where the actin filaments were attached to
the outer surface of the vesicles through biotin-streptavi-
din-biotin linkers [10], the present model was designed by
polymerizing actin inside the vesicles and by coupling the
filaments to the inner surface of the vesicle through electro-
static forces between actin and lipids exposing positively
charged polyethyleneglycol head groups. To measure the
viscoelastic impedance of the composite shell, superpara-
magnetic beads were coupled to the apical cap of the
resulting soft shells adhering on glass substrates. Retarda-
tion functions J�t� were determined by analyzing the bead
deflections evoked by force pulses (acting in the vertical
direction) by 3D particle tracking. The in-plane (shearing)
and out-of-plane (bending) deformations were evaluated
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by assuming spherical symmetry of the top surface of the
adhering shells. From the retardation functions, relaxation
moduli G�t� were obtained by numerical convolution
analysis.

As described in detail previously [9], vesicles with
reconstituted actin shells were prepared by electroswelling
of a lipid mixture [11] in the presence of low ionic strength
G buffer containing 3 �M freshly purified monomeric
actin and 3 �M rhodamin-phalloidin (Sigma) for fluores-
cent studies. Vesicles sedimented and adhered on the bot-
tom of a measuring chamber from which actin in the outer
medium was removed by rinsing with pure G buffer. Actin
inside the adhering vesicles was polymerized by the addi-
tion of 2 mM of Mg2� which diffuse into the vesicles
through the ionophore A23187.

The vertical magnetic tweezers setup was mounted on an
inverted Zeiss Axiovert 200 microscope equipped with a
Plan Neofluar 100x objective and a Hamamatsu ORCA-ER
CCD camera working at 30 Hz. The magnetic field gra-
dient was generated with a horseshoe-shaped soft iron core
magnetized by two oppositely polarized copper coils,
driven by a function generator (Stanford Research) and a
homemade power amplifier. The three-dimensional motion
of the beads, observed by bright field microscopy, was
analyzed with a tracking algorithm as follows. The inten-
sity profile of the bead image was fitted by a two-
dimensional Gaussian. The center of the distribution de-
termines the bead position in the image plane (x-y) while
its vertical position z is obtained from the Gaussian width
w�z�. The relationship between the position z of the bead
above the focal plane and the widthw�z�was determined in
a separate experiment [12]. The force was calibrated as a
function of the coil current through measurement of the
velocity of the beads in water glycerol mixtures of known
viscosity. Tosyl activated superparamagnetic beads of
1:4 �m radius (Dynal, Norway) were bound to the vesicle
exposing amino functional groups of the polyethylenglycol
(PEG) lipid. For each experiment vesicles with only one
bead attached to the membrane of the apical hemisphere
were chosen. Observation by confocal microscopy showed
that the apical hemisphere of the adhering vesicles form to
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a good approximation spherical caps. Therefore the posi-
tion of the magnetic bead can be presented in terms of
spherical coordinates �R; �� with the center of the coordi-
nate system being located in the center of the sphere
[Fig. 1(a)]. The horizontal position of the vesicle center
and its radius were determined by phase contrast micros-
copy. The force induced displacement ~x�t� of the beads is,
in general, parallel to the plane defined by the meridian and
the z axis [plane of drawing in Fig. 1(a)], and deviations
from this plane are typically smaller than 0.1 rad. Thus ~x�t�
can be decomposed into components u�t� parallel to the
meridian (in-plane deformation) and h�t� perpendicular to
the membrane surface (out-of-plane deformation).

The creep compliance J�t� � u�t�=Fk [or J�t� �
h�t�=F?] was measured by application of sequences of
Np force pulses (typically Np � 20) of amplitude F and
duration T (typically T � 32 s). Each component of the
induced displacement (parallel or normal to the vesicle
surface) was averaged over the Np pulses. The creep com-
pliances J�t� were transformed into the relaxation moduli
G�t� using the convolution relation [13]

Z t

0
J�t� t0�G�t0�dt0 � t � 0 (1)

and the numerical method of Liu [14].
Figure 1(c) provides strong evidence that the polymer-

ized actin forms a thin shell beneath the inner leaflet of the
membrane. Figure 1(b) shows that the actin filaments form
parallel bands that rarely cross, strongly suggesting that the
actin shell is approximately a monolayer. Further evidence
for this comes from separate neutron reflectivity measure-
ments of the average thickness and actin density of an actin
layer adhering to a lipid monolayer (at the air-water inter-
face) containing 5 mol % DPPE-PEG2000-amine [15].
Neglecting residual G actin in the vesicle, the average
surface density of actin � can be determined according to
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FIG. 1. (a) Schematic side view of a composite actin-
membrane shell adhering on a substrate. Force induced deflec-
tions of the magnetic bead are decomposed into components
parallel (u) and perpendicular (h) to the vesicle surface.
(b),(c) Fluorescence micrograph of actin cortex taken by focus-
ing onto an adhering area of the vesicle shell (b) or at the equator
of a vesicle (c). The bright object in (c) is the magnetic bead
adhered to the vesicle surface. Scale bar: 5 �m.
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� � cR=3 where R is the radius of the vesicle and c is the
initial actin concentration. The linear increase of �with the
vesicle radius was confirmed by separate measurements of
the relative lateral actin density based on the analysis of
fluorescence micrographs (unpublished data). The linear
relationship allowed us to measure viscoelastic parameters
as a function of the actin surface concentration by keeping
the initial actin concentration constant and choosing
vesicles of different radii. One estimates the average dis-
tance � between filaments (corresponding to the mesh size
of bulk networks) according to � � 1=�NAl, where l ’
2:8 nm is the monomer-monomer distance, NA is
Avogadro’s number, and the actin density � is measured
in mol=m2. For the vesicle of Fig. 1(b) with � �
20 nmol=m2 one finds � ’ 30 nm, a value much smaller
than the lateral resolution of the microscope. Since in
Fig. 1(b) filamentous structures are clearly visible, it is
likely that actin filaments are locally coupled and as-
sembled into bundles.

Creep response curves J�t� were measured for forces
ranging from 0.6 to 3.4 pN. As shown in the example of
Fig. 2, all curves slow down and tend to saturate at t >
10 s. Careful observations of the vesicle shape by phase
contrast microscopy showed that no appreciable global
deformation is induced by the applied forces, showing
that the induced bead deflection is due to local deformation
of the shell. The local deformations of the vesicle shell
were fully reversible.

For further evaluation we consider the relaxation modu-
lus G�t� obtained from J�t� by convolution (Fig. 2). The
relaxation moduli exhibit a characteristic shape consisting
of four distinct regimes. At short times G�t� relaxes rapidly
with time. At t > �1 a crossover into a plateau regime is
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FIG. 2. Averaged in-plane creep compliance J�t� (raw data
points shown in gray) and corresponding calculated relaxation
modulus G�t� of vesicle with actin surface concentration of
12 nmol=m2 for an applied force F � 1:8 pN. Note four regimes
of G�t� (see text for details). Inset: Variation of in-plane plateau
modulus G0 (crosses) and elastic constant k (circles) obtained
from the analysis of the thermal fluctuations of the beads as a
function of actin cortex density � (corresponding to vesicles of
various diameter). Error bars represent the standard deviation of
G0 and k determined for different forces and methodological
uncertainties.
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FIG. 3. Deformation field mapping experiment: Phase contrast
micrograph of position of magnetic (large) and nonmagnetic
(small) beads on the top hemisphere of a vesicle of radius
16 �m. Black (or white) crosses indicate positions in a force
free state (or when a force of 1.8 pN is applied to the magnetic
bead). Inset: Plot of the displacement u of force probes as a
function of the logarithm of r, the radial distance from the point
force. Scale bar: 2 �m.
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observed, which goes over into a flowlike behavior at t�
�1 and finally ends in a second plateau at t > 10 s. Apart
from the second plateau regime, the relaxation modulus of
the composite actin-membrane shell closely resembles that
of entangled or weakly cross-linked actin solutions [7].
The transition time �1 � 0:15 s is of the order of the
entanglement time of the entangled actin networks solu-
tion, which is typically �e � 0:3 s. We thus identify the
short time regime with the relaxation of the filament ten-
sion and the plateau at t > �1 with the affine deformation
of the actin cortex. The plateau modulus G0 is thus a
measure for the shear elastic modulus of the actin cortex.
The terminal regime at t > �2 does not correspond to the
normal flow by reptation diffusion as indicated by the ap-
pearance of a second plateau. Figure 2 (inset) shows that
the in-plane plateau modulus G0 increases monotonically
with surface actin density �. Because of the small variation
of density, the present data are compatible either with a
quadratic dependence, as suggested for bulk networks [7],
or with a linear dependence starting at � > 6 nmol=m2.
This points again to substantial coupling of the actin
filaments, which determines also the shear elasticity.

In the absence of external forces the beads exhibited
remarkable in-plane and out-of-plane thermal fluctuations.
We measured the mean square displacement hx2i in each
direction by fitting the distribution of the fluctuation am-
plitudes with a Gaussian function. In the inset of Fig. 2, we
plot the effective elastic constants k � kBT=hx2i obtained
from the mean square amplitudes of the in-plane thermal
fluctuations of the bead. Similar to the plateau modulus G0

the k values increase with the actin density but with a
smaller slope. Very similar to the behavior found for the
tangential deformations, the out-of-plane relaxation mod-
uli exhibit a plateaulike regime (data not shown) and the
plateau value is taken as the measure for the bending
modulus of the composite actin-membrane shell.

In order to compare elastic parameters obtained for
different model systems such as vesicles with an outer
actin coat [10], bulk entangled and cross-linked actin
solutions [7], or cell envelopes [1], we determine in the
following the bending modulus � and the surface shear
modulus �� of the composite shell. Consider first the
bending deformation. The pronounced random motion in
the normal direction suggests that the tension of the com-
posite shell is small and the out-of-plane deformation is
dominated by bending elasticity. The deflection h by a
pointlike normal force F is approximately given by [16]
F=h ’ 8��=R2 ’ Gh

0 where � is the bending modulus, R
the vesicle radius, and Gh

0 the out-of-plane plateau modu-
lus. For a vesicle of R � 6 �m a value of Gh

0 ’

3	 10�6 N=m was found, yielding � ’ 4	 10�18J ’
1000kBT. This value of � is comparable to the bending
modulus found for vesicles coated with an outer layer of
actin by analyzing the power spectrum of thermal fluctua-
tions [10]. It is 2 times larger than the bending modulus
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measured for the cell envelope of D. Discoideum amoeba
cells by microinterferometry [17].

A completely different approach to determine bending
moduli is by measuring the mean square displacements
hh2i of the out-of-plane thermal fluctuations of the bead.
The out-of-plane fluctuations are determined by the over-
damped bending undulations of the composite shell. If we
neglect the unknown tension of the shell, the mean square
amplitude can be related to the bending stiffness � accord-
ing to [18] hh2i ’ kBTR

2=�2���. The measurement of the
out-of-plane mean square fluctuations for a vesicle with
R � 6 �m yielded hh2i � 8100 nm2, which corresponds
to a bending modulus �� 700kBT. This value agrees well
with that obtained from the plateau modulus of the out-of-
plane relaxation modulus.

Consider now the shear deformation. To determine the
absolute values of the shear modulus of the composite
shell, the deformation field induced by a local (pointlike)
force must be known [1]. For this purpose, nonmagnetic
polystyrene beads of 0:5 �m radius were coupled to the
vesicle surface in addition to the magnetic bead (Fig. 3).
The displacements u of the force probes induced by the
deflection of the magnetic bead were analyzed as a func-
tion of the distance r from the point force. As shown in the
inset of Fig. 3, three beads (indicated by a star) exhibit very
similar displacements at different distances and are proba-
bly connected to a single actin bundle. The displacements
of all other beads decrease roughly logarithmically with
distance r, with a slope of about 4	 10�7 m. Considering
the shell as a homogeneous elastic sheet of thickness d, the
deformation field u�r� induced by a tangential point-
like force F [19], is expected to decay with the distance
r from the point of application of the force as u�r� ’
F�lnr0=r�=�4��d�. F=d is the force per unit length, r is
the radial distance from the origin and r0 is the radius of the
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contact between bead and membrane. � is the bulk shear
modulus (in Pa). According to Fig. 3 (inset), this relation is
reasonably well verified. The deformation field decays to
about 1=3 of its maximum value u�r0� at a distance � �
6 �m, defined as the decay length. The homogeneous shell
model should be considered as a zero order approximation
since the filaments are locally aligned over distances of
several �m. Its application is justified by the finding
that the filaments are locally connected. Considering the
case of F � 1:8 pN, one obtains for the surface shear
modulus �� � �d ’ 4	 10�7 Pa m and for the Young
modulus E � ��=d� 50 Pa by assuming that the shell
thickness corresponds to one actin monolayer of thickness
d � 8 nm [15].

The shear modulus � can also be estimated from the in-
plane thermal fluctuations. Since the membrane is essen-
tially incompressible, the tangential mean square fluctua-
tions associated with shearing are related to� according to
[18] hu2i ’ kBT�lnR=a�=�4��d� where �=a is the largest
and �=R the smallest wave vector excited. For a R �
6 �m vesicle, we measured mean square fluctuations of
hu2i ’ 1:2	 104 nm2. By assuming that a is of the order of
the interfilament distance �� 100 nm, it yields a surface
shear modulus of �� ’ 1:1	 10�7 Pa m. This compares
well with the value (�� ’ 4	 10�7 Pa m) found for a
vesicle of R � 16 �m radius (Fig. 3), which is larger by
a factor of 3 if we take into account the dependence on
actin density suggested by Fig. 2 (inset).

The observed variation of the shear modulus with the
surface actin density (Fig. 2) is qualitatively consistent
with laws for entangled or slightly cross-linked tridimen-
sional actin networks [7]. It is thus interesting to compare
the elastic moduli of various actin networks. The Young
modulus of a vesicle shell exhibiting an interfilament
distance of � � 40 nm (cf. Fig. 3) is E � 50 Pa. It is
astonishingly similar to the shear modulus of a bulk en-
tangled network of mesh size � � 40 nm which would be
about 60 Pa. The above value for the composite actin-
membrane shell is only a factor of 10 smaller than the
Young modulus of the envelope of quiescent endothelial
cells (E� 400 Pa [1]) which exhibit a mesh size of the
order of � ’ 100 nm and a thickness of �1 �m. This
suggests that actin cortices of quiescent cells are only
slightly cross-linked as conjectured in a recent study of
the viscoelastic impedance of endothelial cells [1]. A next
step would be to extend the present study to reconstituted
actin cortices cross-linked by proteins [20]. We propose
comparative rheological studies of cell models and cell
surfaces as a valuable tool to gain insight into structural
features of the actin cortex. Giant vesicles with reconsti-
tuted actin cortex are examples of soft polymerized mem-
branes exhibiting both bending and shear rigidity. They
constitute experimental verifications of statistical surfaces
with shear rigidity, which have been extensively studied
theoretically [18,21], while quantitative experimental stud-
ies of their viscoelastic properties are still scarce.
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