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We study exciton and biexciton spectra in disordered semiconductor quantum wires by means of
nanophotoluminescence spectroscopy. We demonstrate a close link between the exciton localization
length along the wire and the occurrence of a biexciton spectral line. The biexciton signature appears only
if the corresponding exciton state extends over more than a few tens of nanometers. We also measure a
nonmonotonous variation of the biexciton binding energy with decreasing exciton localization length.
This behavior is quantitatively well reproduced by the solution of the single-band Schrédinger equation of
the four-particle problem in a one-dimensional confining potential.
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Photoexcited electron-hole pairs in semiconductors can
form hydrogenlike bound states called excitons. If the
photoexcitation is strong enough, the formation of mole-
cules made of two excitons, called biexcitons, becomes
possible [1]. Recently, exciton-biexciton systems have at-
tracted considerable interest because they represent a
model system for the implementation of elementary quan-
tum computing operations [2] and because of their poten-
tial as sources of strongly correlated photon pairs both in
bulk materials [3] and in quantum confined nanostructures
[4]. Works on biexciton properties in nanostructures have
studied its internal structure, binding energy, and depen-
dence on dimensionality [5] and structural disorder [6—8].

In presence of heterointerface disorder, a biexciton sig-
nature in the emission spectrum appears only in the case of
exceptionally large Coulomb correlation energy [9]. In
most cases of I11-V heterostructures, however, disorder
can broaden the excitonic resonance by an amount com-
parable or larger than the biexcitonic binding energy, thus
hiding the biexcitonic spectral feature. Consequently, ei-
ther nonlinear spectroscopic techniques, as four-wave mix-
ing, or um (or nano)photoluminescence (PL) become
necessary in order to detect a biexciton signature [2,10—
12]. In most nano-PL studies (see, e.g., Ref. [13]), how-
ever, the biexciton spectral feature tends to be absent. It has
been speculated that exciton localization might play a role
in explaining this lack of biexcitonic emission [14], but
until now no systematic study has been undertaken.
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In this context, another long standing issue has been the
disagreement, especially in quantum wells, between theo-
retical predictions and experimental measurements of the
biexciton binding energy [15,16]. Remarkably, most of the
theoretical studies have concentrated on the quantum well
case [6—8], whereas none, to the best of our knowledge,
has been devoted to quantum wires (QWRs).

In this Letter, we study biexciton states in QWRs as a
function of exciton localization. To this purpose, we em-
ploy a nanophotoluminescence experimental technique
able of high spatial resolution. We present the first ex-
perimental evidence in a disordered QWR system that
the presence or absence of the biexciton emission in
nano-PL spectra is related to the exciton localization
length. In addition, we study the dependence of the bi-
exciton binding energy upon the exciton localization, find-
ing that more localized states present a larger energy
spread of the biexciton binding energy, than more extended
ones. Our measurements are supported by a model relying
on the solution of the four-particle, one-dimensional biex-
citon Schrodinger equation in the effective-mass approxi-
mation. This model explains the dependence of the
biexciton binding energy on localization and agrees well
with the experimental data.

The experimental apparatus is a low temperature (8 K)
scanning near-field optical microscope (SNOM) [17]. The
excitation source is the 530.9 nm line of a Kr™ laser, and
the PL signal is analyzed by a double monochromator
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(25 peV spectral resolution), a photomultiplier tube for
spectrally integrated acquisitions over the scanning area,
and a cooled CCD camera for spectral acquisitions at a
given position. All measurements are performed in the
excitation-collection mode with a chemically etched un-
coated single mode fiber with an overall spatial resolution
of 200 nm.

The investigated samples are GaAs/Al13Gayg7As V-
groove QWRs [18,19]. The far-field PL spectrum exhibits a
full width at half maximum of 8 meV, due to inhomoge-
neous broadening. Near-field PL spectra show some do-
mains of very high interface quality, where exciton states
extend over hundreds of nanometers along the wire. As in
previous analyses [10], we will distinguish spatial domains
of type A, displaying only one exciton line, from those of
type B where more than one sharp exciton peak appears
within the SNOM resolution in the low-excitation nano-PL
spectrum.

For type A spatial domains, our analysis proceeds as
follows. First, we measure the spatial extension of single
exciton PL peaks at low-excitation intensity, where inter-
excitonic interactions are negligible. In our interpretation,
we identify the extension over which the PL intensity
remains approximatively constant with the extension of
the exciton center-of-mass (c.m.) wave function. As an
example we show in Fig. 1(a) near-field spectra as a
function of the tip position along the QWR for the most
extended exciton state we measured. Second, we place the
fiber tip at the center of the domain, increase the excitation
intensity, and a new line appears on the low energy side of
the exciton peak [Fig. 1(b)]. We attribute this emission line
to the biexciton state. This attribution is based on the
analysis of the integrated emission intensity of the two
lines as a function of the excitation intensity, as can be
seen in Fig. 1(c): to an almost linear increase of the exciton
PL intensity corresponds a quadratic increase of the biex-
citon intensity. The binding energy of the biexciton is given
by the energy separation between the exciton and the
biexciton peak. In this case it is Bgx = 2.075 meV. We
stress the fact that in all QWR domains whose size is large
enough to display a single exciton peak, we always observe
a single biexciton line upon increasing the excitation,
providing further evidence of its biexcitonic origin [10].
The alternative explanation in terms of neutral or charged
exciton states bound to impurities can be ruled out not only
on the basis of the different expected power dependence,
but also because they could generally give rise to more than
one additional spectral line (or even to none) for each
exciton line, according to the local impurity environment.

In the case of type B domains, a rough estimate of the
exciton localization lengths is given by the ratio between
the SNOM spatial resolution and the number of measured
peaks. This sets the values to a few tens of nanometers. To
illustrate the trend, we focus here on three nano-PL spectra,
respectively, having five, seven, and nine PL peaks at low-
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FIG. 1. (a) Near-field spectra taken at low-excitation intensity

(Iy = 10 mW cm™2) and at regular spatial intervals of 120 nm
along the QWR in a spatial domain of type A, indicating an
extension of about 300 nm for the exciton line. (b) Two near-
field spectra taken at the center of this domain for different
excitation intensities, showing the presence of an additional line
at high excitation. (c) Log-log plot of the integrated intensity
dependence on the laser power of the exciton and biexciton
emission lines. Fits to a power law Ip; o I7,. are also plotted.

excitation intensity. All other measured spectra show the
same general behavior. For the case of five exciton peaks
[Fig. 2(a)], five supplementary peaks appear as the excita-
tion is increased. The systematic appearance of these addi-
tional lines and their quadratic dependence on the
excitation intensity again allows one to relate them to
biexcitons. For one of the exciton peaks [Fig. 2(d)], a
supplementary line appears on the high energy side of
one of the exciton lines, suggesting a negative binding
energy of Bgx = —0.975 meV. Apart from this isolated
case, the other binding energies range between 2.025 and
2.65 meV. For the case with seven emission lines
[Fig. 2(b)], only one additional line appears for increasing
excitation. Finally in the case of nine lines [Fig. 2(c)], no
additional peaks appear. The data therefore suggest that for
QWR domains of type B displaying an increasing number
of exciton peaks—and therefore a decreasing average
exciton localization length—the biexciton emission peaks
tend to disappear.

The results concerning the binding energy are summa-
rized in Fig. 3. Because of the limited spatial resolution of
the SNOM, we can only distinguish between states having
an extension comparable or larger than 200 nm. We attrib-
ute to all other experimental points a nominal localization
length of 50 nm, which refer to measurements done in
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FIG. 2. Near-field spectra taken in three different QWR do-
mains of type B and for two different excitation intensities (I, =
10 mW cm™2), where, respectively, (a) five, (b) seven, and
(c) nine exciton lines are present at low-excitation intensity,
but (a) five, (b) one, or (c) no additional line appear upon
increasing the excitation intensity. Spectrum (d) shows more
clearly the additional peak emerging on the high energy side of
one exciton peak in spectrum (a).

QWR domains of type B. It appears very clearly that
extended states are less affected by changes in the local-
ization length, whereas more localized states show larger
variations of the biexciton binding energy.

For the theoretical model, we start from the three-
dimensional effective-mass Schrodinger equation for two
electrons and two holes. As the intersubband energy sepa-
ration is much larger than both the amplitude of disorder
energy fluctuations, the exciton, and the biexciton binding
energy [20], we can safely employ the single-subband
approximation. This consists in neglecting the mixing of
higher electron and hole subbands in the exciton and
biexciton states. The biexciton wave function ¥, in par-
ticular, is rewritten as follows: W ,(r,, ¥, 'y, Fjp) =
D (201, 2> 201> Z02)[ Jatta(rd), with a running over the
four-particle indexes el, €2, k1, h2. The functions u, are
the single-particle confinement wave functions of ground
electron and hole subband states in the direction trans-
verse to the QWR. Integrating the three-dimensional
Schrodinger equation over the transverse coordinates ry,
reduces it to an effective one-dimensional equation:
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FIG. 3. Measured biexciton binding energies as a function of
the estimated exciton localization lengths (solid dots). The
horizontal error bar applies to all experimental points and are
determined by the spatial step of 120 nm between two successive
spectra. We also plot the calculated biexciton binding energies
(triangles) for a one monolayer deep single particle square
localization potential (see inset). The vertical error bars are
due to the tolerance of the numerical results. The parameters
used were 6V, =4.9 meV, oV, = 1.1 meV, m, = 0.067m,,
and m;, = 0.26mg. my is the free electron mass.

Egx is the biexciton energy. V,(z,) represents the single-
particle confinement potential due to a monolayer step
heterointerface fluctuation along the QWR axis [20].

The equation contains six Coulomb terms, four attrac-
tive and two repulsive. Strictly speaking, the spatial de-
pendence of U%(z) on z depends on the particles a and b.
However, inspection of QWR electron and hole confine-
ment functions show that these differences are small [21]
and we will neglect them, approximating all Coulomb
terms by the following expression:

e2ab 1

Ub(z) =

ey

deey z| + 1y

o? takes the values +1/2, depending on the charges of the
particles. A detailed discussion about the approximation of
Eq. (1) can be found in Ref. [22]. [, is a free parameter
related to the exciton binding energy which is difficult to
measure experimentally in our sample. We thus take the
theoretical result of Ref. [23], Ex = —17 meV, and adjust
ly to reproduce it, obtaining /, = 3 nm.

We choose a square shape of the single-particle potential
V,(z,) (see inset of Fig. 3), neglecting the contribution of
alloy disorder. In order to calculate the biexciton binding
energy it is necessary to solve first the corresponding
exciton problem. The binding energy is then calculated
as Bpx = 2Ex — Egx. Both exciton (two-particle) and
biexciton (four-particle) one-dimensional Schrodinger
equations were solved numerically on a discrete grid in
real space, using a parallel computation facility. The simu-
lation was performed on a QWR length of 200 nm with
infinite well boundary conditions, and the convergence of
both exciton and biexciton eigenenergies versus grid step-
size was carefully checked.
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The computed biexciton binding energy is plotted in
Fig. 3 as a function of the dip size for a one monolayer
deep width fluctuation (see inset). Very good agreement
with the corresponding measured values is obtained. We
observe an increase of the biexciton binding energy as the
size of the dip shortens, followed by a decrease for the
smallest dip sizes. We remark that, in the calculations, the
binding energy increases by about 0.4 meV, which is
slightly smaller than the variation seen in the experiment.
Qualitatively similar results were obtained in the case of a
two monolayer deep well.

Our results are qualitatively very similar to the ones
obtained in Ref. [8]. We discuss the computed biexciton
binding energy for decreasing dip size, starting from the
largest computed value L = 200 nm. For sufficiently large
dip sizes, as compared to the mean distances between the
bound electrons and holes, we expect both exciton and
biexciton to behave as rigid particles. We then assume, as
is usually done for the exciton in disordered nanostruc-
tures, that the localization potential acts only on the c.m.
part of the wave function, without affecting the internal
motion. This is the limit treated in Ref. [7]. It is then
possible to rewrite Bgx in the following way: Bpx =
(2Kx — Kpx) + Bpx- Kx (Kgx) is the exciton (biexciton)
c.m. kinetic term, and Bpy is the binding energy of the
biexciton in an ideal QWR and is a constant term. Thus at
first the variation in the biexciton binding energy Bgx is
due to the kinetic terms. This leads to an increase of the
biexciton binding energy because the exciton term counts
twice and because the exciton has a mass which is half the
biexciton mass: the exciton kinetic contribution is more
sensitive to variations of the dip size. The decrease for the
smallest dip sizes is on the contrary due to changes in the
internal motion in the biexciton, in particular, to the hole-
hole Coulomb repulsion. Because of the hole heavier mass,
as compared to electrons, the hole charge density is more
peaked and leads to a strong repulsion when the biexciton
is forced into very small dips. Indeed, calculations done for
the same dip sizes but with smaller hole masses (i.e., wider
charge distributions) show no decrease of Bpy.

Our model describes in a satisfactory way the experi-
mental biexciton binding energies, except for the single
observed negative one. Until now negative binding ener-
gies have been observed only in strongly confined quantum
dots [24], where they are attributed to the strong spatial
confinement causing the direct Coulomb repulsion to out-
balance the attractive contributions to the binding energy.
In our case, however, the spatial confinement is weaker and
the binding contribution is expected to dominate. We do
not understand at present the physical origin of this isolated
experimental evidence. It might be argued that carrier
density effects [25] can make the biexciton system behave
in a substantially different way from the simple four-
particle picture adopted in our mode. Alternatively, the
presence of locally excited states and the interplay between

biexciton formation dynamics and localization might also
be considered.

In conclusion, we studied the relationship between ex-
citon localization and biexciton binding energy in quantum
wires and we showed that the presence of the biexciton
peak in near-field spectra depends critically on the exciton
localization length. These results shine new light on the
biexciton localization properties which go beyond the
specific case of QWRs. By solving the four-particle
Schrodinger equation, we were able to compute the bind-
ing energy of the localized biexciton. It displays a non-
monotonous dependence on the dip size, in good agree-
ment with our measurements.
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