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Fermions without Fermion Fields
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It is shown that an arbitrary fermion hopping Hamiltonian can be mapped into a system with no fermion
fields, generalizing an earlier model of Levin and Wen. All operators in the Hamiltonian of the resulting
description commute (rather than anticommute) when acting at different sites, despite the system having
excitations obeying Fermi statistics. While extra conserved degrees of freedom are introduced, they are all
locally identified in the representation obtained. The same methods apply to Majorana (half) fermions,
which for Cartesian lattices mitigate the fermion doubling problem. The generality of these results
suggests that the observation of Fermion excitations in nature does not demand that anticommuting
Fermion fields be fundamental.
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As fundamental entities, fermion fields appear in con-
flict with the principle of locality: all fermion creation and
annihilation operators anticommute no matter how far
apart are the points in space at which they act (without
restriction by causal connection). This feature is built into
quantum field theory through the use of anticommuting
Grassman fields, and supersymmetric string theories like-
wise have explicit anticommuting coordinates. Locality is
only preserved in the physics by conservation of fermion
number, forcing the fermion operators to appear in pairs. In
recent years there has been sustained interest in how par-
ticle statistics can be manipulated [1–3], and understand-
ing the fractional quantum hall effect [4] has widened the
appreciation that the statistics of the elementary excitations
of a system need not simply reflect the statistics of its
components. Thus we ask whether it is really necessary
to put fermion fields into physics ‘‘by hand,’’ or whether
they can always be understood as excitations emerging
from quantum systems built of operators whose action is
strictly local.

It is well known how fermions relate to hard-core bosons
in one dimension [5] and how they can be built out of
bosons in two dimensions with attached magnetic flux [6],
and that neither approach extends naturally to three dimen-
sions of space. The present Letter builds on the recent work
of Levin and Wen [1,2], who showed that particular models
of pairwise fermion hopping could be represented in terms
of operators obeying locality, while the elementary excita-
tions remained strictly fermionic. Their mechanism is
essentially the reverse of how Kitaev [7] showed that a
particular hexagonal lattice spin model has fermionic ex-
citations. They showed that their mechanism worked on
square and cubic lattices explicitly, and interpret it in terms
of string-net condensation [2,8].

Here I show that fermion hopping on an arbitrary graph
can be mapped into the excitations of a Hamiltonian devoid
of explicit fermionic operators, in which all operators act-
ing at different sites commute. The dimensionality of space
which the graph might approximate is irrelevant to the
mapping, which is sensitive only to local coordination
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numbers (presumed finite). This strongly suggests that
quite arbitrary fermion excitation spectra can be repre-
sented, and perhaps understood, as arising from the exci-
tation of systems whose fundamental operators obey
locality in their commutation properties.

We start from a generic fermion hopping Hamiltonian,

Hhop �
X
i

c�i Vici �
X
hiji

c�i tijcj; (1)

where the fermion field ci has standard anticommutation
properties fci; cjg � fc�i ; c

�
j g � 0 and fc�i ; cjg � �ij, the

Vi are simple ‘‘on-site’’ potentials (relative to the fermion
chemical potential), and the tij � t�ji are simple ‘‘intersite’’
hopping matrix elements. The connectivity of the graph (or
lattice) is encoded by which elements tij are nonzero, but
below we will need to explicitly restrict the sum over links
hiji to those cases. We will also exploit the gauge invari-
ance of the Hamiltonian, that two models related by t�2�jk �

t�1�jk e
i#jk are equivalent (through adjustment of phase of the

ck) provided the relative phase factors multiply to unity
around all closed loops.

We now introduce new operators Sij � �Sji modulating
the hoppings across each link, such that these operators
commute with each other and the original fermions, and
with eigenvalues sij � �sji � �1. The Hamiltonian is
then generalized to

Hgauge �
X
i

c�i ViCi �
X
hiji

iSijc�i uijcj

�
X
hij::zi

gij::zSijSj:::S:zSzi: (2)

Here uij � is0
ijtij so that the first two terms recover the

hopping Hamiltonian (1) for a particular set of outcomes
s0
ij of the operators Sij. We add extra couplings gij...z

to (products round) ‘‘Wilson loops’’ of the Sij operators;
setting gij::z=�s0

ijs
0
j:::s

0
:zs

0
zi� sufficiently negative ensures that

only combinations of the Sij eigenvalues which are gauge
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transformations of the original hopping Hamiltonian con-
tribute to the low energy states of the new Hamiltonian.
Because the operators Sij commute with each other and the
Hamiltonian, they could be separately diagonalized to their
eigenvalues sij, which are constants of the motion, and we
then recover the original tight binding Hamiltonian (up to
gauge symmetry). Thus the system does still have its
original fermion excitations.

The key to obtaining a representation with locality is
now to factorize each link operator into a pair of Majorana
(half) fermions,

Sjk � imjkmkj;

where the Majorana half-fermion operators are Hermitian
(for simplicity) and have anticommutation properties
fmjk;mj0;k0 g � 2�jj0�kk0 as well as anticommuting with all
the original standard fermion operators ci. We then asso-
ciate each new half fermion with the site of its first index,
motivating us to rewrite the hopping terms in the
Hamiltonian as b�ijuijbji, where

bij � mijci:

Crucially the new operators bij commute, �bij;bi0j0 	 � 0
and �b�ij;bi0j0 	 � 0, when their left (or site) indices are
unequal, i � i0. The loop terms can also be expressed in
terms of operators conforming to locality in this way.
Regrouping the factors in each loop gives us
SijSjkSk:::S:zSzi � Bi;zjBj;ikBk;j:::Bz;:i, where

Bi;ik � imjimjk:

We can finally eliminate all fermionic notation by writing
ni � c�i ci and hence express the Hamiltonian as

Hgauge �
X
i

Vini �
X
hiji

b�ijuijbji �
X
hij::zi

gij::zBi;zjBj;i:::Bz;:i:

(3)

From their definitions it is trivial to check that any pair
drawn from all the operators ni, bij, b�ij , Bi;jk appearing in
the Hamiltonian (3) commute when their first indices are
distinct. As a result we can factor the overall Hilbert space
(of wave functions) on which they act into a product of
single site Hilbert spaces, and the only nontrivial action
of each operator is within the corresponding single site
Hilbert space.

We now focus on each site separately and note how the
required commutation properties can be explicitly con-
structed. Each Dirac fermion can be split into a pair of
Hermitian Majorana half fermions,

2ck � mk0 � imk�1; (4)

in terms of which nk � �imk0mk�1 � 1�=2. The complete
set of operator properties then required on-site k are now
just the Majorana anticommutation relations

fmkm;mkng � 2�mn; �1 
 m; n 
 zk;
17640
where zk is the coordination number of (i.e., number of
links to) site k. These relations are obeyed by standard
(Euclidean) 4� 4 Dirac matrices for 2� zk 
 5 and by
their 2s � 2s generalizations for 2� zk 
 2s� 1. It is
crucial that we do not require to represent fermion anti-
commutation between local fermion operators on different
sites, because all the terms in the Hamiltonian contain an
even number of fermion factors from each site. Writing
�k�i� for the k’th Dirac matrix acting in the Hilbert space of
the i’th site, we then have all the operators in the bosonic
Hamiltonian (3) expressed in terms of these:

nj �
i
2
�0�j���1�j� �

1

2
;

bjk �
1

2
�k0 �j���0�j� � i��1�j�	; Bj;ik � i�i0 �j��k0 �j�:

(5)

Here on-site j, 1 
 k0�j; k� 
 zj denotes the local index
associated with its link to site k.

The end result is that all the operators appearing in the
Hamiltonian are expressed in terms of local matrix opera-
tors, which in turn are all equivalent to bilinear combina-
tions of Dirac matrices: these might loosely be termed
‘‘spins.’’ Where the original hopping Hamiltonian had
links with explicit fermion hopping, the derived general-
ization of Levin and Wen’s model [1] has coupling be-
tween the local spins. Most importantly, the spin operators
for different sites commute—yet by construction the sys-
tem still has the original fermionic excitations.

The loop products of operators Bi;jk can be further
simplified in terms of products of new operators

Pij � �j0�i;j��i��i0�j;i��j� (6)

in direct index correspondence with the original operators
Sij. These new operators are not equivalent to the Sij
operators; in particular, two operators Pij anticommute if
they have one site index in common.

Locality of all operators has been gained at the expense
of enlarging the Hilbert space. The original hopping
Hamiltonian (1) acted on a Hilbert space of dimension
2N where N is the number of sites, equivalent to N qubits,
one for each site. To construct the generalized Wen
Hamiltonian [(3) with (5)] we first added qubits equal to
the number of links, A. However, in the final local repre-
sentation we carried fewer noncommutations, and multi-
plying the dimension of all the local Hilbert spaces leads to
a dimension equivalent to total qubit count

C � NE �
1

2
NO � A:

Here NE and NO are the counts of sites with even and odd
coordination number, respectively, the even being less
efficiently represented because the number of anticommut-
ing Dirac matrices is naturally odd.

We should now expect that there are A� 1
2NO constants

of the motion, and these and one more can be found as
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follows. First, from every link ij, we have the correspond-
ing Pij commuting with every term in the Hamiltonian (3).
The result is that arbitrary (product) strings of P opera-
tors commute provided they have no ends in common,
including closed strings which have no ends. Second, for
every even coordinated site we have Hermitian �k �

i�z�2�=2 Qz
j��1 �j�k� anticommuting with every � on that

site, and hence commuting with every term in the Hamil-
tonian; however, �k anticommutes with any P-string end-
ing on site k. The maximal commuting set of all these
operators then appears to be the union of: (a) all mutually
inequivalent closed loop P strings, equivalent to a minimal
set of independent loop terms in the Hamiltonian (3),
numbering A� N � 1; (b) the �k for all even sites, num-
bering NE; (c) open P strings ending on odd sites, with no
ends in common and inequivalent under products with
closed loop strings, all of which enumerate to NO=2 by
taking all the odd sites in (arbitrary) disjoint pairs.

All of the above commute with each other and with the
Hamiltonian, so we have in total A� 1

2NO � 1 explicit
constants of the motion. Each corresponding operator has
eigenvalues �1, so its conservation removes one qubit
from the dynamics. The author conjectures that the one
extra conservation law relates to conservation of fermion
number (modulo 2).

Can one exploit the constants of the motion to reduce the
size of the (quantum-mechanically coupled) Hilbert space?
Trying this with Pij operators induces successively less
local anticommutation relations, tending to rebuild the
original fermionic representation. However, we can elimi-
nate the sitewise local �i on even sites, leading us to a
dimension-independent generalization of what in one di-
mension corresponds to the anisotropic Heisenberg model
representation of fermions.

Let us focus on some particular even site i and in the
following drop reference to that index. We can eliminate
��1 � i�z�2�=2�0�1 . . .�z�, and then the operators in the
Hamilonian which contained ��1 take the forms n �

� iz=2

2 �1 . . .�z�� 1=2, bk �
1
2�k0�0�1� iz=2�1 . . .�z��.

Then because � commutes with the Hamiltonian we can
focus on the sector with eigenvalue � � 1 and make this
replacement. Now the only matrices appearing are �k, k �
0 . . . z, and we can take a minimal anticommuting repre-
sentation of these [9], in terms of which we obtain n � 1

2 �

�1� �0�, bk � �k0n, b�k � n�k0 � �k0 �1� n�.
For an arbitrary graph of even coordinated sites, we now

have Hamiltonian

Heven �
X
i

Vini �
X
hiji

ni�j0 �i�uij�i0 �j�nj

�
X
hij...zi

gij...zPijPj...P;zPzi; (7)

and the explicit form for the Pij remains as per Eq. (6),
except that the dimension of the local Dirac matrices
17640
has been halved. It is now particularly clear how the hop-
ping terms conserve fermion numbers, and indeed one
can further show that ni�j0 �i�uij�i0 �j�nj � ni�1� nj� �
�j0 �i�uij�i0 �j��1� ni�nj making the interconnection be-
tween occupation numbers 1j0i and 0j1i totally explicit.
The loop terms are also particle conserving and each Pij
factor can be reorganized in similar manner. If one special-
izes to z � 2 corresponding to a one-dimensional chain of
sites, the Dirac matrices reduce to Pauli matrices and the
first two terms of the Hamiltonian are exactly equivalent to
the anisotropic Heisenberg spin chain [10], well known to
represent fermions in one dimension. It is gratifying that
such a long-known fermion Hamiltonian turns out to have
natural extension to arbitrary dimensions and even to arbi-
trary graphs (of even coordination number).

All of our analyses can be generalized to the case where
we start from hopping of an arbitrary number h of half
fermions on each site. Hitherto we started from one stan-
dard fermion per site in the fermion hopping Hamiltonian
(1) and split that into two half fermions (4), h � 2. In the
general case any natural number h is allowed, with the on-
site potentials and hopping matrix elements making arbi-
trary (Hermitian) mixings amongst the h components. For
h � 1 there are no on-site potential terms, and hermiticity
restricts the hopping matrix elements to be pure real, uij �
u0ij, giving us

Hhop;1 � i
X
hiji

u0ijm0im0j: (8)

The standard fermion case discussed earlier is h � 2,
and reduces to the sum of two (commuting) h � 1
Hamiltonians if the on-site potentials are zero and the uij
are all pure real. The case h � 3 commands interest for
‘‘generations’’ in particle physics.

The discussion of conservation laws and reduction of
Hilbert space generalizes quite trivially, with the under-
standing that even and odd sites are identified by whether
h� z is even or odd. Particularly simple spin models are
obtained from h � 1, where the local operators bij are
Hermitian and can be directly represented as single local
Dirac matrices �j�i� (rather than bilinear products) requir-
ing only zi Dirac matrices at each site, and with Bi;jk /
i�j�i��k�i�. Quite general Majorana fermion hopping
Hamiltonians can therefore emerge from the excitations
of models built out of simple local spin operators. The
gauge symmetry changes naturally with h. For h � 1 we
have only Z2 (sign changes), corresponding to the trans-
formations exploited in the ‘‘KLW trick’’ of introducing
the S operators, and for h � 2 we already noted U�1� �
O�2� gauge symmetry. For h � 3 we would have gauge
symmetry O�3� if the on-site terms are sufficiently sym-
metric, but quite arbitrary mixing of components allowed
in the on-site terms of the Hamiltonian would in general
reduce the gauge symmetry to O�2�.

The simple (hyper-)cubic lattices are of special interest
as a source of insight into the continuum limit, and particle
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physics interest focuses particularly on the case where the
fermion excitations are (almost) massless. The special case
of the main analysis above previously presented by Levin
and Wen, which was for simple square and cubic lattices
with h � 2, falls into this category. However, that work
also suffered from the standard ‘‘Fermion doubling prob-
lem’’ of lattice fermion models [11], yielding 2d massless
fermions in d dimensions.

Starting from a single half-fermion (h � 1) hopping
model halves the fermion doubling to give just 2d�1 mass-
less fermions in d dimensions. From the point of view of
the spin models, this is just as natural as h � 2. For
simplicity we present the calculation in one dimension,
which suffices to demonstrate the novelty, as the elabora-
tion to higher dimensions simply follows in the same
manner as Levin and Wen [1,2]. A simplest one-
dimensional Majorana hopping Hamiltonian is

H1 � �iu0
X
n

mnmn�1

and imposing periodic boundary conditions for such a
system ofN sites results in a spectrum of standard massless
fermions,

H1 � 2u0
X�

k�0

�2~c�k ~ck � 1� sink:

Here the wave vectors span half the first Brillouin zone of
the lattice, k � n2�=N, n � 1 to N=2, the fermion opera-
tors are given by ~ck � 1=

�������
2N
p P

ne
�iknmn, and the negative

wave vector Fourier components give their conjugates.
These ~ck are standard full fermion operators, in particular,
obeying f~c�k ; ~clg � �kl.

The above is in effect a staggered fermion [12] solution
to the fermion doubling problem [11]. The full fermions
obtained by halving the Brillouin zone can be mapped onto
one full conserved fermion per two original sites, but these
are nonlocally related to the original half fermions. This
parallels another solution to the fermion doubling problem,
in which similarly nonlocal hopping is used to force a
better spectral approximation to the continuum [13].

One can introduce mass without doubling the spectrum,
simply by modulating the bond strengths u0n;n�1 !�����������������
u02 � �2
p

� ���1�n to open up an energy gap at E � 0
(corresponding to k � 0; �). One then finds two ex-
citations with, E�k� � �4

����������������������������
u02sin2k� �2
p

, over the
quarter Brilliouin zone 0 
 k < �=2. Adding more
Cartesian dimensions with suitably frustrated signs to
the couplings leads [as per Levin and Wen [1,2] for
the full fermion case] to the natural generalizations
in higher dimensions, for example, E�kx;ky;kz��

�4
����������������������������������������������������������������������������
u02x sin2kx�u02y sin2ky�u02z sin2kz��2

q
in three dimen-

sions. Each increase in dimension generates a doubling of
the spectrum to two species or a two component fermion in
d � 2, and a four component fermion in d � 3, matching
standard free fermion fields.
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In overall summary, we can now construct Hamiltonians
in terms of strictly local operators (in the sense of their
commutation relations) whose excitations correspond to
fermion hopping on whatever graph is desired. If one
accepts intersite hopping as an approximation to contin-
uum particle dynamics, then this means that almost any
fermion problem can be constructed out of the excitations
of what might loosely have been described as a Bose
system.

The method has been presented for free (noninteracting)
fermion systems. However, it is trivially generalizable to
the case of an arbitrary interaction, provided this is a
function of the state number operators (or other bilinear
combinations of local fermion variables). In particular,
Coulomb interactions between different sites are allowed,
as are Hubbard interactions. Modifying hopping according
to occupation numbers, as in t-J model, is also readily
incorporated.

The ‘‘spin’’ Hamiltonians constructed to give exactly the
specified fermions are somewhat cumbersome. Are there
simpler local spin Hamiltonians which still give fermion
excitations? The generalized anisotropic Heisenberg
Hamiltonian is one case in point: setting the on-site terms
to zero and removing the number operator factors from the
hopping terms turns out to give the same as starting from a
Majorana hopping Hamiltonian (8). Also, we could by
deliberate construction build Hamiltonians which are
supersymmetric in their excitation spectrum, just by add-
ing in the desired bosons. Are there variations on the theme
which are more naturally supersymmetric?
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