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Compact quantum electrodynamics in 2� 1 dimensions often arises as an effective theory for a Mott
insulator, with the Dirac fermions representing the low-energy spinons. An important and controversial
issue in this context is whether a deconfinement transition takes place. We perform a renormalization
group analysis to show that deconfinement occurs when N >Nc � 36=�3 � 1:161, where N is the
number of fermion replica. For N <Nc, however, there are two stable fixed points separated by a line
containing a unstable nontrivial fixed point: a fixed point corresponding to the scaling limit of the
noncompact theory, and another one governing the scaling behavior of the compact theory. The string
tension associated with the confining interspinon potential is shown to exhibit a universal jump as N !
N�c . Our results imply the stability of a spin liquid at the physical value N � 2 for Mott insulators.
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An important topic currently under discussion in the
condensed matter physics community is the emergence
of deconfined quantum critical points in gauge theories
of Mott insulators in 2� 1 dimensions [1,2]. A closely
related problem concerns the stability of U�1� spin liquids
in 2� 1 dimensions [3,4]. In either case, models which are
often considered as toy models in the high-energy physics
literature are supposed to describe the low-energy proper-
ties of real systems in condensed matter physics. For
instance, a model that frequently appears in the condensed
matter literature is the �2� 1�-dimensional quantum elec-
trodynamics (QED3) [5,6]. It emerges, for instance, as an
effective theory for Mott insulators [7–9]. Let us briefly
recall how it arises in this context. The Hamiltonian of a
SU�N� Heisenberg antiferromagnet is written in a slave-
fermion representation asH � ��J=N�

P
hi;jif

y
i�fj�f

y
j�fi�,

where the local constraint fyi�fi� � N=2 holds. A
Hubbard-Stratonovich transformation introduces the aux-
iliary field �ij � hf

y
i�fj�i [7]. The resulting effective the-

ory can be treated as a lattice gauge theory, where the
gauge field Aij emerges as the phase of �ij, i.e., �ij �
�0eiAij , where �0 is determined from mean-field theory.
The �2� 1�-dimensional low-energy effective Lagrangian
in imaginary time has the form [4,7–9]

L �
1

4e2
0

F2
�� �

XN
a�1

� a���@� � iA�� a; (1)

where each  a is a four-component Dirac spinor and
F�� � @�A� � @�A� is the usual field strength tensor. A
rough estimate of the bare gauge coupling is given by e2

0 �
�4

0a
3, where a is the lattice spacing.

An anisotropic version of QED3 has also been studied in
the context of phase fluctuations in d-wave superconduc-
tors [10,11]. A key feature of the QED3 theory of Mott
insulators is its parity conservation. In fact, it is possible to
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introduce two different QED3’s, one which conserves par-
ity and one which does not. The latter theory involves two-
component spinors, and allows for a chirally invariant
mass term which is not parity invariant. In such a QED3

theory a Chern-Simons term [12] is generated by fluctua-
tions [13]. The QED3 theory relevant to Mott insulators
and d-wave superconductors involves four-component
spinors, and does possess chiral symmetry [5,6]. In such
a model, the chiral symmetry can be spontaneously broken
through the dynamical generation of a fermion mass. In the
context of Mott insulators, the chiral symmetry breaking
corresponds to the development of Néel order [9]. Indeed,
the nonzero condensate h �  i corresponds to the staggered
magnetization. Since in condensed matter physics parity-
conserving QED3 is not just a toy model, and since the
four-component Dirac spinors represent physical excita-
tions—the low-energy spinons—we may call this theory
quantum spinodynamics.

An important feature of QED3 for Mott insulators is that
the U�1� gauge group is compact. The compactness causes
important changes in the physical properties of the theory.
It allows for quantum excitation of magnetic monopoles
which play an important role in determining the phase
structure of the theory. This has been known for a long
time. In particular, Polyakov [14] has shown that compact
Maxwell theory in 2� 1 dimensions confines permanently
electric test charges. The electrostatic potential has the
form V�R� � R, instead of the usual two-dimensional
Coulomb potential V�R� � lnR of the noncompact
Maxwell theory in 2� 1 dimensions. Since V�R� � R
holds for all values of the gauge coupling, the compact
�2� 1�-dimensional Maxwell theory does not exhibit any
phase transition, i.e., the confinement is permanent. This
theory is equivalent to a Coulomb gas of magnetic mono-
poles in three dimensions and it is well known that such a
gas does not undergo any phase transition. However, when
matter fields are included the situation changes, and a
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deconfinement transition may occur. Indeed, matter fields
induce shape fluctuations of the electric flux tube, leading
to a correction term to the linearly confining potential.
Using a string model for the electric flux tube, Lüscher
[15] found

V�R� � �R�
�d� 2��

24R
�O�1=R2�; (2)

where � is the string tension. At the deconfining critical
point, the string tension vanishes and only the Lüscher term
remains at long distances. It represents the ‘‘blackbody’’
energy of the �d� 2� transverse fluctuations of the two-
dimensional world sheet of the string [16].

Interestingly, by studying QCD near four dimensions,
Peskin [17] found that, at the critical point, the interquark
potential does have the 1=R behavior for all d 2 �4; 4� 	�,
and argued that this should also be valid outside this small
dimension interval. Recently we [18] have found that such
a behavior is also realized in an AbelianU�1�-gauge theory
for d 2 �2; 4�, provided that this is coupled to matter fields.

In order to better illustrate this mechanism, we shall
explicitly perform the calculation of the interspinon poten-
tial to one-loop order in arbitrary space-time dimension
2< d � 4, going to the case of interest d � 3 at the end
[19]. The potential is defined by

V�R� � �e2
0

Z dd�1q

�2��d�1

eiq	R

q2
1���q��
; (3)

where e0 is the bare electric charge, and ��q� is the
vacuum polarization. At one-loop order, the vaccum polar-
ization is given by ��q� � 8A�d�Ne2

0jqj
d�4, with A�d� �

��2� d=2��2�d=2�=
�4��d=2��d��. At large distances the
vacuum polarization gives the more relevant contribution
to the scaling behavior if 2< d< 4, and the interspinon
potential is given by

V�R� � �
1

2d�1��d�2�=2��d=2� 1�A�d�N

1

R
: (4)

For d � 3 the above potential becomes simply V�R� �
�4=��NR�. Interestingly, by expanding (4) near d � 2,
we obtain at lowest order

V�R� � �
�d� 2��

8NR
; (5)

which has for N � 3 replica precisely the form of the
Lüscher term, although this theory has no confinement.
In order to allow for this, we compactify the U�1� gauge
group which gives rise to magnetic monopoles. In the
absence of fermions this theory in d � 3 is known to be
described via a duality transformation by the sine-Gordon
Lagrangian [14]

L �
1

2

�
e0

2�

�
2
�@���2 � 2z0 cos�: (6)

This is also the field theory of a Coulomb gas of mono-
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poles, with z0 being the bare fugacity of the gas. The
renormalization group (RG) equations for a Coulomb gas
in d � 3 were obtained a long time ago by Kosterlitz [20].
His results can be used here to obtain the RG equation for
the gauge coupling in the absence of fermionic matter. By
introducing the dimensionless couplings f � e2�l�=e2

0 and
y � z�l�=�e2

0�
3, where l � ln�e2

0r� is a logarithmic length
scale, we obtain

df
dl
� 4�2y2 � f; (7)

dy
dl
�

�
3�

�3

f

�
y: (8)

The above equations imply that there is no fixed point for
the gauge coupling. Therefore, the compact three-
dimensional Maxwell theory does not undergo any phase
transition. The photon mass M2 � 8�2z=e2 is always non-
zero and the theory confines permanently the electric
charges. It can be seen from Eq. (7) that a kind of anti-
screening happens in this theory, which is responsible for
confinement. Indeed, we can rewrite Eq. (7) as df=dl �
�1� �̂A�f, with �̂A � �4�2y2=f. The negative sign of �̂A
is actually a remarkable example of the intimate link
between asymptotic freedom and confinement [21].

Next we obtain the modification to Eqs. (7) and (8) due
to the coupling with the matter fields. In order to derive the
RG equations including matter we have employed a for-
malism similar to the one developed by Young [22] in the
case of the two-dimensional Coulomb gas. This formalism
is based on a mean-field self-consistent approximation and
applies very well to the d > 2 case, since d � 2 is the
upper critical dimension for the Coulomb gas. The needed
modification comes from the extra renormalization of the
gauge coupling due to the vacuum polarization. This leads
to an effective charge e2�l� � "�el=e2

0�ZA�l�e
le2

0, where
"�r� is the scale-dependent ‘‘dielectric’’ constant of the
Coulomb gas of magnetic monopoles, and ZA�l� is the
gauge field wave function renormalization. In terms of
dimensionless couplings this leads to

df
dl
� 4�2y2 � �1� �A�f; (9)

where �A � �d lnZA=dl. However, the expression of y2 in
terms of bare variables is different from before, being given
by y2 � �32�2=3�z2

0ZA�l�e
6l�u�l�=�e2

0�
6, where u�l� �

U�el=e2
0� is a self-consistent magnetic monopole potential

satisfying du=dl � �3=f [23]. Therefore, the coupling to
matter modify also Eq. (8) to

dy
dl
�

�
3�

�3

f
�
�A
2

�
y: (10)

Note the crucial difference between the analysis made
here and the one of Refs. [18,24,25]. There it was assumed
that the underlying noncompact theory is critical, and
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FIG. 1. Schematic flow diagram for the case N � 1.
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monopoles were introduced only at that point. This corre-
sponds to take the RG function �A at the fixed point of the
noncompact theory, i.e., �
A � 
A � 1 [26] for d � 3. In
this way, Eqs. (9) and (10) become similar to the RG
equations of a Kosterlitz-Thouless phase transition [27],
except that the present dimensionality is three instead of
two [24,28]. Our Eqs. (9) and (10) have the advantage of
being valid at all length scales. Equations (9) and (10) are
similar to the ones in the work of Hermele et al. [4]. There
is, however, an important difference: Equation (10) con-
tains the correction proportional to �A which is absent in
Ref. [4]. This will allow us to strenghten considerably the
results obtained by these authors. It is important to empha-
size that the additional term in Eq. (10) cannot be ne-
glected even if a large N limit is assumed. Indeed, since
the largeN limit is taken forNe2

0 fixed, it follows that �A �
O�1�, as it should be, since it gives the anomalous dimen-
sion RG function of the noncompact theory. It is of
the same order as the first term between parentheses in
Eq. (10), which corresponds to the dimensionality of
the space-time. Thus, this problem has no obvious control
parameter, and should be seen as a matter field fluctuation-
corrected Debye-Hückel theory. In the case of compact
Maxwell theory, the Debye-Hückel theory corresponds to a
nondilute gas of monopoles and its validity is determined
by the parameter n�3

D, where n is the monopole density and

�D �
����������������������
e2=�4�2n�

p
is the Debye Length. For the compact

Maxwell theory we have that n�3
D � 1 and the Debye-

Hückel theory is a very good approximation. Including
matter fields makes the monopole gas dilute and n�3

D is
no longer large. The Debye-Hückel parameter can be
written as n�3

D �
���
2
p
e2=�8�2M�, where M � 2�

�����
2z
p

=e
is the photon mass. Thus, in the presence of matter a
perturbation theory around the compact Maxwell theory
can be performed where e2=M is a small parameter. We
will see below that the fixed points at nonzero fugacity give
indeed a small value of n�3

D.
By considering the one-loop result �A � Nf=8, we find

besides the fixed points f
 � 8=N and y
 � 0 of the non-
compact theory, the following nontrivial fixed points gov-
erning the phase structure of compact QED3:

f� �
4

N

�
6�

���������������������
36� N�3

p �
; (11)

y� �
1

�

�
60� N�3 � 10

���������������������
36� N�3
p

2N

�
1=2
: (12)

The above fixed points exist only for N <Nc � 36=�3 �
1:161. For N > Nc only the noncompact fixed point exists.
For N � 1 the fixed points �f�; y�� give for the Debye-
Hückel parameter the values �n�3

D�� � 0:3 and �n�3
D�� �

0:15, respectively. In Fig. 1 we show a schematic flow
diagram for the case N � 1. The dashed line in the flow
diagram passes through the unstable fixed point having
coordinates �f�; y��. This line separates two different
17640
critical regimes. Note that �A is N dependent at the fixed
points �f�; y��, with its two possible values given by ��A �
Nf�=8 � �6�

���������������������
36� N�3
p

�=2. This result implies that
there is no N � 1 for which ��A � 1 in compact QED3.
This rules out a KT-like transition in compact QED3 for
physical values of N.

The flow diagram in Fig. 1 indicates two distinct physi-
cal regimes governed by stable fixed points separated by
the dashed line in the figure. Depending on the initial
conditions on the physical parameters, the system will
choose to flow either to the noncompact fixed point below
the dashed line, or to the compact one above the dashed
line. The interesting physical regime for us is governed by
the fixed points at nonzero fugacity. It is clear that the fixed
points �f�; y�� are associated with confined phases, since
there both the photon mass M and string tension � �
2e2M=�2 are nonzero. The string tension approaches a
universal value as N approaches Nc from the left, i.e.,
limN!N�c �=e

4
0 � 8��=3�3=4. Since for N >Nc the string

tension vanishes, it follows that there is a universal jump at
Nc. Thus, in the present context the string stiffness behaves
similarly to the superfluid stiffness in two-dimensional
superfluids [29], though here there is no KT transition.
The vanishing of the string tension above Nc is a clear
signature for spinon deconfinement for N � 2.

Below Nc the interspinon potential has the form V�R� �
�R� �=R�O�1=R2�, where � is the universal coeffi-
cient of the Lüscher term for the string fluctuation in
compact QED3. The coefficient � is defined by � �
fc=2�, where fc is any of the three charged fixed points
in Fig. 1. For the stable confining regime governed by
the fixed point �f�; y�� we obtain that � � 2�6����������������������

36� N�3
p

�=�N.
It is perfectly plausible to argue that in the confined

phase of compact QED3 the chiral symmetry is broken,
just as in the QCD case [30]. Chiral symmetry breaking
is believed to occur in QED3 for N <Nch, where typically
Nch � 3. Indeed, an early estimate based on the analysis
of the Schwinger-Dyson equation gives Nch � 32=�2 �
3:2 [6], which was roughly confirmed by a Monte Carlo
6-3
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simulation giving Nch � 3:5� 0:5 [31]. However, the true
value ofNch is still far from being consensual. For instance,
recent Monte Carlo simulations do not find a decisive
indication that chiral symmetry is broken for N � 2 [32]
and an elaborate analysis of the Schwinger-Dyson equa-
tions givesNch � 4 [33]. Our results indicate that for Nc <
N <Nch the spinons are deconfined but chiral symmetry is
broken. However, it is not excluded that Nc � Nch.
Recently, a conjectured inequality was used to suggest
that Nch � 3=2 in the noncompact case [34]. It is remark-
able that our critical value Nc is so close to the latter
estimate. If Nch > 2, we would obtain that for the physical
case N � 2 antiferromagnetism is present [9], while the
spinons are deconfined. In such a situation doping will
eventually destroy the magnetic order and, since the spi-
nons are deconfined, a genuine spin liquid will develop.
Our results confirm the analysis of Ref. [4], whose dis-
cussion was made in the large N limit.

We are indebted to Zlatko Tesanovic, who pointed out an
important mistake in a previous version of the paper. This
work received partial support of the European network
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