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A new scheme of first-principles computation for strongly correlated electron systems is proposed. This
scheme starts from the local-density approximation (LDA) at high-energy band structure, while the low-
energy effective Hamiltonian is constructed by a downfolding procedure using combinations of the
constrained-LDA and the GW method. The obtained low-energy Hamiltonian is solved by the path-
integral renormalization-group method, where spatial and dynamical fluctuations are fully considered. An
application to Sr, VO, shows that the scheme is powerful in agreement with experimental results. It further

predicts a nontrivial orbital-stripe order.
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First-principles methods for electronic structure calcu-
lations have been extensively applied to various systems in
the last few decades. The density-functional theory (DFT)
supplemented with the local-density-approximation (LDA)
[1,2], is one of the most successful schemes. However, in
strongly correlated electron systems such as transition-
metal oxides, LDA fails even at qualitative levels of simple
systems and remain challenges in terms of first-principles
calculations. The failure is ascribed to the correlation
effects generating large spatial and dynamical fluctuations
beyond the applicability of existing schemes.

In electronic structure calculations, DFT and wave func-
tion methods are two typical approaches [3]. The rapid
development and recent extensive applications of the DFT
approach rely on its less computation time while a system-
atic improvement of its accuracy is not an easy task. On the
other hand, the wave function methods including the
Hartree-Fock and variational schemes cost much longer
computational time, while it offers a better accuracy for
strongly correlated systems as we discuss later.

After considering this contrast, an optimal choice would
be a hybrid method. Since the electrons far from the Fermi
level do not show serious fluctuation effects, LDA and its
self-energy correction called the GW approximation (GW)
[4,5] offer a reasonable and efficient scheme there. If the
elimination of the high-energy degrees of freedom by a
downfolding scheme would result in the effective low-
energy Lagrangian or Hamiltonian, they can be treated by
an accurate wave function method. Such successive elimi-
nations of the high-energy part have a conceptual simi-
larity to the renormalization-group method. In this Letter,
we propose a downfolding scheme to derive the low-
energy effective models from the higher-energy structure,
together with a reliable low-energy solver for the down-
folded effective model, as a single framework of a first-
principles method. To show the performance, we apply
the present scheme to Sr,VO,, which reveals intriguing
properties.
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Since the electrons have kinetic and interaction energies,
the downfolding procedure basically consists of two parts.
One is to derive the screened Coulomb interaction after
eliminating the high-energy degrees of freedom. The other
is to take into account the effect on the kinetic part, as the
self-energy effect from the high-energy electrons.

After eliminating the high-energy part, the effective
model in general has a frequency dependence represented
by a Lagrangian. However, in the low-energy region, the
Hamiltonian approach, obtained by replacing the dynami-
cal Coulomb interaction with the static one, still offers an
efficient and essentially correct framework [6,7].

Recently, the dynamical mean-field theory (DMFT) [8]
was employed as a low-energy solver for finite temperature
properties [9]. Since the DMFT ignores the spatial corre-
lations, its refinements by using the cluster or cellular
algorithms [10,11] were attempted. In this Letter, we alter-
natively solve the low-energy effective Hamiltonian by the
path-integral renormalization-group (PIRG) method [12]
implemented with the quantum-number projection algo-
rithm [13]. The PIRG scheme allows treating equally the
spatial and dynamical fluctuations in a controllable way
and hence makes it possible to obtain the ground state of
the effective Hamiltonian exactly.

We now start with the downfolding procedure. We first
perform the LDA calculations using the linear muffin-tin
orbital (LMTO) method [14]. In many correlated electron
systems, the bands close to the Fermi level are relatively
well separated from the high-energy bands as in transition-
metal oxides, where the bands near the Fermi level mainly
consist of 3d character of transition-metal atomic or-
bitals (and frequently hybridized with oxygen 2p atomic
orbitals). In this circumstance, the whole band may be
downfolded to an effective model consisting only of the
3d bands (or additionally with the oxygen 2p bands).
If the crystal field is strong, it may be downfolded even
to the bands closest to the Fermi level, for example,
the e, OF e, bands only, in a cubic environment. Here

© 2005 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.95.176405

PRL 95, 176405 (2005)

PHYSICAL REVIEW LETTERS

week ending
21 OCTOBER 2005

we report the first attempt of the downfolding along this
line.

When we restrict the degrees of freedom to the isolated
LDA bands closest to the Fermi level, we first need to
reduce the Hilbert space. With the notation for the states
having the maximal weight near the Fermi level as {|d)}
and the rest of the basis functions as {| )}, the whole Hilbert
space may be spanned as {|x)} = {|d)} ® {|r)}. A typical
example of Sr,VOy is shown in Fig. 1. In this case, three
isolated bands closest to the Fermi level mainly consist of
the 3d t,, states, which defines the Hilbert subspace {|d)}.
Then, the equations for eigenvalues and eigenfunctions of
the LDA Hamiltonian H can be rewritten as

(A" — w)ld) + H"|r) =0, (D

A"|d) + (A" — w)|r) = 0. (2)

We eliminate the subspace |r), which yields the effective
w-dependent Hamiltonian for only the d subspace:
A (w)=H%—A(A™ — ) 'A"™. From the overlap
matrix S(w) =1+ A (A" — 0) 20, with (d|S|d) = 1,
the tight-binding effective Hamiltonian, / is obtained after
the orthonormalization of the vectors |d) — |d) = §'/?|d)
and fixing the energy w in the center of gravity of the band
of our interest: 1 = $~Y/ 2A4dS ~1/2_ After Fourier trans-
formation to the real space, h defines the Wannier basis.
The band structure obtained after the elimination of the
higher-energy bands shows an excellent agreement with
the LDA band computed from the LMTO basis as we see in
Fig. 1. This formalism has generality and can be easily
extended to a more complex band structure [15].

We now derive an effective Coulomb interaction W,
among electrons at the isolated #,, Wannier orbitals after
considering the screening by other bands. In principle, W,
may be derived by a full GW scheme [6]. However, for
practical use, the whole GW calculation requires large
computation time. Since the screening from the polariza-
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FIG. 1 (color online). (Left panel) Electronic structure of
Sr, VO, in LDA. (Right panel) Enlarged behavior of 7,, bands
computed from LMTO basis functions (solid light blue curves)
and downfolded tight-binding bands (dot-dashed brown curves).
The corresponding bands in the left panel are shown by arrows.
The symbols denote the character of ¢,, bands in the I" point. The
Fermi level is at zero energy.

tions of high-energy electrons does not have strong fluctu-
ations, it may alternatively be replaced by the constrained-
LDA (C-LDA) method [16]. Then we take two steps. First,
we compute the interaction W ,, which takes into account
the screening by the electrons residing at atomic orbitals
other than 3d. This step is performed by the C-LDA
method [16]. When the higher-energy bands are well sepa-
rated, we expect that the frequency dependence is small
around the Fermi level and it may well be calculated by the
C-LDA scheme [16] by starting with the basic definition of
the effective Coulomb interaction formulated by Herring
[17]: Ugg' = E[ng + 1, ngr — 1] — E[ng, ng'], which is
nothing but the energy cost for moving a 3d electron
between two atoms, located at R and R’, and initially
populated by ng = ng: = n electrons. Note that at this
stage, the screenings of 3d-3d interactions by the electrons
at the same 3d atomic orbitals are excluded, because the 3d
atomic orbitals do not hybridize each other in a C-LDA
scheme. For Sr,VO,, the on-site Coulomb interactions
derived from Ugg/ is U = 11.3 eV. For comparison, the
bare Coulomb interaction is 21.8 eV. Thus, the screening of
3d-3d interactions by non-3d electrons is strong. In addi-
tion to U, the intra-atomic exchange coupling J can be
easily calculated in the C-LDA approach. By using these
two parameters, one can restore the full matrix W, of
screened Coulomb interactions [18].

It is known that LDA does not take into account the self-
energy effect and fails in reproducing a gap at the Fermi
level [5]. LDA also ignores energy shifts in core levels
arising from the self-interaction effect. However, in the
present scheme, the bands near the Fermi level are left for a
more refined PIRG method, while the core electrons hardly
polarize and do not contribute to the screening. The va-
lence electrons give the major contribution to the screening
in this C-LDA treatment and their energies are well de-
scribed by LDA with few self-energy corrections in many
cases including transition-metal oxides [19]. Therefore,
although C-LDA is not complete, it offers a reasonable
and efficient way of counting the screening effects.

In the second step, we use the GW scheme [6] by taking
W, as if it is the starting bare Coulomb interaction. Then
the RPA screening produces W,(w)=W,;/(1 — P, (w) X
W.,). The whole polarization of the 3d atomic orbitals in
the LMTO basis is given by P (w) = P, (w) + f’,zg(w),
where ﬁtzg(w) is the polarization purely from the #,, LDA

band, while P, represents the rest of the 3d atomic orbi-
tals contribution contained in the e, LDA band as well as in
the component hybridized in the oxygen 2p LDA band.
Since the identity W(w) = W,,/(1 — P (0)W,)) = W,/
1- ﬁ,zg(w)W,) holds, W, plays the role of the effective
interaction in the downfolded Hilbert space of the 7,, LDA
band. We also note that some of the oxygen 2p LMTO
component is contained in the 3d t,, Wannier orbital. The
screening by these components is already taken into ac-
count by the C-LDA scheme, while it should be excluded
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in the low-energy model for the 3d t,, Wannier orbitals. In
practice, however, this contribution to the screening turns
out to be negligible. Although the whole GW scheme
considering P, results in W, we consider the interaction
within the #,, LDA band more accurately by the low-
energy solver as we explained above. Then in the effective
low-energy model for the basis representation of the 7,,
Wannier orbital, the screened Coulomb interaction is given
by W,. In general, W, becomes frequency dependent
(Fig. 2). If the frequency dependence is small within the
range of the 7,, bandwidth, we are allowed to take the low-
frequency limit W,(w = 0) as the interaction part U [6].

In the downfolding process, the kinetic-energy part is
modified through the self-energy X (k, @), which can be
evaluated in the GW approximation [6]. Here the self-
energy effect from 3d and 2 p atomic orbitals is considered
while the polarization of the higher-energy bands is small
and we neglect it. We also take into account the self-
energy arising from the dynamical part of the Coulomb
interaction W,(w) — W,(w = 0) through the GW scheme
[6]. Such a self-energy effect mainly appears through
Re>,, and contributes to the renormalization factor Z =
(1—-0%/dw),L, (~0.8 for Sr,VO,). The low-energy part
of Im3 can be ignored (Fig. 2). Then the effective
Hamiltonian is reduced to a multiband Hubbard model in
the Wannier representation for the 1,, band:

— mm' T
H = Z 1" ClonC ' o

(i, jym,m’ o

1
T35 D Uspnoclaclpencn )
ia,By,6

where c;rma(c imo) Creates (annihilates) an electron with the
spin o = (1, ) at the #,, Wannier orbital m = (xy, yz, zx)
of the site i and n;,, = c}:ngc,-mg. The Greek symbols
stand for the combination (m, o) of the indices.

We now discuss the PIRG method [12] as a solver of the
low-energy effective Hamiltonian. The basic method is to
perform the path integral by following the principle that
lim,_o[exp(—77)]?|®) generates the ground state, with
a proper trial wave function |®). The path integral is ex-
pressed by the summation over the Stratonovich variables
after the Stratonovich-Hubbard transformation of the inte-
raction. This generates increased number of nonorthogonal
Slater-determinant basis functions as |®;) = 3L | ¢;|¢;).
Then the truncated basis with a fixed L is constructed by
the optimization of ¢; and |¢;). Linear extrapolation to the
full Hilbert space as a function of the energy variance,
obtained by a systematic increase of L, leads to an accurate
estimate of the ground state. It is also crucial to implement
a quantum-number projection in restoring the symmetry of
the Hamiltonian [13]. A typical accuracy is seen in the en-
ergy estimate of —1.85790 = 0.00002 compared with the
quantum Monte Carlo result of —1.8574 * 0.0014 for the
standard Hubbard model at half filling on a 6 X 6 square
lattice with the transfer ¢ = 1 at the interaction U = 4 [13].
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FIG. 2 (color online). Diagonal matrix elements of the
screened Coulomb interaction W,(w) (left panel) and the self-
energy, 3(w) (right panel). The inset shows the high-frequency
part of W,(w) (the lines corresponding to the xy and yz orbitals
are indistinguishably close). The real and imaginary parts are
shown by solid and dashed curves, respectively.

The present first-principles method combined with the
PIRG solver is now applied to calculate the electronic
structure of Sr,VO,. This compound has a layered perov-
skite structure and bears a intriguing character because this
has one 3d electron per V site (d! system) with strong two-
dimensional anisotropy and has a dual relation to the one
3d hole per Cu sites (d° system) in the mother compounds
of the cuprate superconductors. The duality is not complete
because, in Sr,VO,, the orbital degeneracy of d I electrons
remains perfectly between the d,, and d,, orbitals. The
crystal field splitting of the d,, orbital is also rather small
(~0.08 eV in the LDA calculation).

In the case of Sr, VO,, after the downfolding, the on-site
interactions among the Wannier orbitals of intraorbital
xy, yz(zx) and interorbital xy-yz(xy-zx) and yz-zx combi-
nations are U = 2.77, 2.58, 1.35, and 1.28 eV, respectively.
The on-site exchange interactions between xy-yz(xy-zx)
and yz-zx orbitals are 0.65 and 0.64, respectively. The
nearest neighbor transfers between xy-xy, yz-yz, and
zx-zx orbitals in the x direction are —0.22, —0.05, and
—0.19 eV, respectively. Although the next-nearest-
neighbor transfers are considerably smaller, they have
also been considered. In order to monitor the Coulomb
interaction, we examine the scale-factor dependence by
multiplying all the matrix elements U,g,s With a factor
A. Namely, the realistic value corresponds to A = 1. The
model (3) is solved by PIRG with sizes from 4 X 4 up to
8 X 4 and 4 X 4 X 2 unit cells with the periodic boundary
conditions, which confirms few size dependences. The
above linear extrapolation is taken from the bases up to
L = 192. Details will be reported elsewhere [20].

Sr, VO, was experimentally studied by Cyrot et al. and
Nozaki et al. [21,22] and recently thin film formed on
LaSrAlO,4 was studied by Matsuno et al. [23]. Transport
and optical properties indicate a very small Mott gap with
rapidly increasing resistivity with decreasing temperature.
It can be easily metallized by La doping [23]. The mag-
netic susceptibility appears to show presumable antiferro-
magnetic transition at around 50 K.

In sharp contrast to the nearly insulating transport prop-
erties, the LDA calculation predicts a good metallic be-
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FIG. 3. Lowest energies per unit cell of total S = 0 (open sym-
bols) and ferromagnetic states (filled symbols) by quantum-
number projected Hartree-Fock (triangles) and PIRG (circles)
calculations for the downfolded model of Sr,VO,. (Inset): Low-
est energies per unit cell of metallic (open squares) and insulat-
ing states (filled squares) by quantum-number projected PIRG
for the downfolded model of Sr,VO,.

havior (Fig. 1). On the other hand, the Hartree-Fock ap-
proximation (HFA) predicts a clear ferromagnetic insulat-
ing phase at the realistic parameter values (see Fig. 3).
LDA + U approach [18] predicts similar results to HFA.

The PIRG results indicate that the ground state becomes
close to the metal-insulator transition and total spin S = 0
in contrast to the HFA as in Fig. 3, but consistently with the
experiment. The Mott transition occurs at A ~ 0.95 as
indicated in the inset of Fig. 3. Furthermore, the PIRG
results in a nontrivial orbital-stripe long-period 2 X 4
structure as shown in Fig. 4. This is interpreted from the
orbital degeneracies and long-range exchanges leading to
frustration effects. It remains paramagnetic in the metallic
side. The realistic relativistic spin-orbit coupling does not
seem to alter the present conclusion [20]. Several possible
interlayer configurations are degenerate within our accu-
racy (~0.005 eV). At least, the antiferromagnetic insulat-
ing state is consistent with the experiments, while the
configurations of spin-orbital order are not experimentally
available so far.

It has turned out that this compound shows very severe
competitions. First, it lies on the verge of the Mott tran-
sition. Second, the ferromagnetic state is rather close in
energy to the true ground state. Third, candidates of the
spin-orbital order are in severe competition with each other
in the order of 100 K. The available experimental results
are consistent with our results, while the LDA, LDA + U,
and Hartree-Fock are not. The failure of single-Slater-
determinant approximations such as HFA and LDA + U
is naturally understood because they relatively well de-
scribe a simple ferromagnetic state, while not the antifer-
romagnetic state with a nontrivial periodicity. Such a phase
with large quantum fluctuations can be described only by
our PIRG scheme going beyond a single-Slater determi-
nant. All of the above indicate that our present approach of
PIRG combined with the downfolding by using the LDA-
GW scheme offers a promising computational method for

FIG. 4 (color online). Ordered spin-orbital patterns in plane for
Sr,VO,. Ordered spin moment is proportional to the length of
the arrows. At each site, occupied orbitals can be specified by a
3-dimensional unit vector in the basis of #,, Wannier orbitals. Its
xy, yz, and zx components are given by (0.70,0.60,0.39),
(0.51,0.80,0.31), (0.40,0.04,0.92), and (0.33,0.06,0.94), for the
sites A, B, C1, and C2, respectively.

strongly correlated electron systems. This compound of-
fers a good benchmark for taking account correlation
effects in computational methods.
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