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Delayed Fracture in Porous Media
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The fracture of porous media subjected to a constant load is studied. Contrary to homogeneous solids in
which fracture usually happens instantaneously at a well-defined breaking strength, the fracture of a
porous medium can occur with a delay, allowing us to quantify the average lifetime of the unbroken
material. We show that the average fracture probability, a key property for risk analysis in civil
engineering, is given by the probability of crack nucleation. The nucleation process can be understood
qualitatively by calculating the activation energy for crack nucleation, taking into account the porosity of

the medium.
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The failure of porous materials, despite its great impor-
tance for both civil engineering (concrete being a porous
medium) and oil recovery, is still ill understood [1-4].
Usual fracture experiments either determine a fracture
threshold stress of a certain material or study fatigue,
fracture due to the application of a cyclic load [1,2].
However, the key quantity for risk analysis in civil engi-
neering and profitability in oil recovery is the probability
that a given porous medium fractures under a given load.

From a more fundamental point of view, the effect of
disorder on the fracture strength of heterogeneous materi-
als is incompletely understood [5]. The failure of such
materials can only very rarely be related directly to the
mechanical properties of the material, but is mostly due to
the presence of defects, causing the material to fail at its
weakest points. The fracture of such strongly disordered
materials is usually discussed in terms of failure distribu-
tions (e.g., the Weibull distribution), giving the probability
of failure of a sample of a given size under a given stress.
Our theoretical understanding of this problem has greatly
improved in recent years by applying ideas of statistical
mechanics [5]. However, for weak disorder, practically the
more relevant case [5], many important questions remain to
be answered. Recent experimental activity has focused on
performing well-controlled experiments on some model
heterogeneous materials [6]. In these systems, the fracture
can occur with a delay; the delay has been associated with
the existence of an energy barrier for nucleating the initial
crack. Theory has provided us with different predictions
for the energy barrier, and hence for the lifetime of the
unbroken material [7]. However, experimentally the dis-
order could not be varied a systematic way so that its effect
on the failure probability remains unknown.

In this Letter we study the fracture properties of porous
materials of controlled disorder, and show that a direct
relation between fracture and material properties can be
established. For this, we manufacture porous media of
controlled porosity. Additionally, our experimental frac-

0031-9007/05/95(17)/175501(4)$23.00

175501-1

PACS numbers: 62.20.Mk, 46.50.+a

ture geometry (three-point flexion) imposes the exact lo-
cation of the fracture. This prevents the material from
rupturing at its weakest point, and consequently allows
us to relate the fracture properties to the measured bulk
elastic properties. In agreement with theory [6,7] we find
that the fracture of porous media is a stochastic phenome-
non. We thus study the time delay to the spontaneous
failure of porous media of controlled porosity subject to
a permanent load. The energy for the spontaneous nuclea-
tion of the initial fracture determines the lifetime of the
unbroken material, and can be related directly, through its
bulk elastic properties, to the structure (porosity) of the
material.

The model porous material we use in our experiments is
made of sintered glass beads of diameter 104—-125 um. We
devised a novel method allowing one to control the poros-
ity ¢ in the range 20% < ¢ < 50%. Glass beads are mixed
with equal-sized salt grains (NaCl) in varying proportion,

FIG. 1. Picture of the porous medium (consolidated glass
bead). The porosity is determined using two techniques: imbi-
bition to water and gamma densitometry. (a) Salt grains trapped
in the consolidated material. (b) Porous medium after dissolving
the salt ¢ = 0.48. (c¢) Porous material without salt ¢ = 0.3.
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and packed in a mold. The sintering process consists in
heating the packing near the glass transition temperature
(630°—-650°), so that the glass beads soften and stick
together (but not the salt grains, which melt at 800 °C),
forming solid bridges of diameter d =~ 28 um. Upon cool-
ing, they form a consolidated porous material (Fig. 1).
Subsequently, water is used to dissolve the trapped salt
grains. Since the salt grains were distributed randomly, this
introduces a random disorder in the material. Porosities of
up to 50% were obtained [Fig. 1(c)]; samples were cut into
(9 X 80 X 1.6 mm) test bars.

The three-point flexion experiments (Fig. 2) show that
upon increasing the force F applied to the middle of the
bar, we first observe an almost perfect elastic response
[Fig. 3(a)], allowing for the evaluation of the Young’s
|

modulus E of the materials. Measuring E for samples with
a different porosity, we find a linear dependence to within
the experimental accuracy [Fig. 3(b)].

To understand the dependence of the Young’s modulus
on the porosity shown in Fig. 3(b), we consider a predictive
continuum micromechanical model for the linear elasticity
of our porous medium [8]. Different models exist for
heterogeneous solids; the so-called self-consistent approxi-
mation we use here is the simplest one. It assumes that the
medium is made of two different types of spherical inclu-
sions (the glass beads and the empty pores), randomly
distributed over the sample. The material outside each
inclusion is assumed homogeneous so that macroscopi-
cally, the material is isotropic. The dependence of the
macroscopic Young’s modulus on the porosity ¢ can be
calculated analytically, and is given by

E=E
OL 10Q2v, —

where E, and v, denote, respectively, the Young modulus
and the Poisson ratio of the glass beads and

A =49 — 114¢ + 25v,%> + 814> + 336 vy — 270 v,>
— 378¢%vy — 10, + 441¢2V02.

Although this equation is rather complicated, we find that
the result for E(¢) is very well approximated (numerically
to within 5%) by the simple expression E = Ey(1 — 2¢),
independently of the value of v [drawn line in Fig. 3(b)]
[9]. We have not been able to find an analytical justification
of this important simplification. The only adjustable pa-
rameter is E, = 2.2 X 10'° Pa, a reasonable value in view
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FIG. 2. The three-point flexion experiment. Pictures taken with
a high-speed camera operating at 20 000 frames/s at the moment
of rupture.
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FIG. 3 (color online). (a) Stress vs deformation curve in the
three-point flexion experiment; results for samples of porosities
0.36, 0.396, and 0.47. (b) Linear dependence of the Young
modulus versus porosity, E = 2.2 X 1010 Pa.
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of the simplifications made here; Eg,s =7 X 10'° Pa.
The difference probably originates from the assumptions
of the model; first, although it is reasonable to assume that
the solid beads remain spherical in the model porous
medium, this assumption is clearly highly questionable
for the voids. Second, the self-consistent model does not
account rigorously for the number of bonds between glass
beads. In spite of these shortcomings, it describes the
experimental observations well, and will be very useful
for understanding the fracture experiments.

The fracture experiments were done in the same three-
point flexion setup. When a constant force F is applied, the
breaking does not occur instantaneously but happens after
a certain delay time. For a given force, the distribution of
lifetimes is a Poisson distribution [Fig. 4(b)]. This demon-
strates the random nature of the fracture process, and
allows one to define a mean breaking time #,. Changing
the force, #;, shows an extremely steep function of the stress
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FIG. 4 (color online). (a) The apparent activation energy (In of
the breaking time/s) as a function of the maximum stress to the
fourth power. A linear dependence is observed. (b) Distribution
of the breaking times #, for a large number of experiments at a
constant force and for a porosity of 40%; the drawn line is a
Poisson distribution.

o [Fig. 4(a)]: changing the stress o by a factor of 2, #, can
vary by almost 2 orders of magnitude. Each data point for a
given porosity and stress corresponds to an average of at
least 15 experiments. For all of these series of experiments,
the delay times are Poisson distributed. This directly im-
plies that the standard deviation is rather large, reflecting
the random nature of the fracture process; the error on t,, is
typically half the lifetime itself.

If an energy barrier for nucleating a crack exists, and the
nucleation is thermally activated, #, should be inversely
proportional to the nucleation or fracture probability p ~
exp(— U,/ kpT); the lifetime #, of the unbroken material is
then inversely proportional to the nucleation probability.
Griffith [2,10] evaluated U, for crack nucleation as the
result of a competition between the cost in fracture (sur-
face) energy U due to the crack growth and the gain in
elastic (volume) energy U, due to stress relaxation in the
vicinity of the crack. Applying such ideas to a small crack
surface of extension L and surface L? [6,7], one gets up to
factors of order unity Us = I'L?. Here T is the fracture
energy; I is different from the surface tension to indicate
that the process is irreversible: once broken, the material
cannot be healed by simply bringing the two pieces back
into contact. This irreversibility is usually assumed to be
also incorporated in the fracture energy [1-4]. For the
elastic energy, U, = o°L*/E; this follows from the fact
that the elastic energy density o/2E in a medium of
Young’s modulus £ and under a uniform stress o is gained
in a volume =~ L. Maximizing U, — U, yields U, =
IPE?/o* and the critical crack length L, = I'E/o?. We
therefore plotted In(fy) ~ U, as a function of o*
[Fig. 4(a)]; although our experimental window is limited
due to the steep dependence of #, on o, the prediction
agrees quantitatively with our experiments. If we take £ =
7 X 100 Pa, ' = 10 J/m?, and o = 50 X 107 Pa, we ob-
tain L, = 280 pum. Compared to 28 wm for the size of the
bridges between neighboring particles, there is a sufficient
separation of length scales to consider the material homo-
geneous at the scale for the initial fracture, a prerequisite
for our Griffith-like theory to be applicable.

The question is then how to relate U, to the porosity ¢.
For this it is sufficient to realize that in our experiments, I'
depends on ¢ in the same way as the Young’s modulus E.
This is because both E and I are determined by the number
of contacts between touching spheres, and in order to
create the fracture surface one has to remove these
contacts. Putting in the approximation for E discussed
above yields U,,0* = IPE? « (1 — 2¢)> which extends
Griffith’s theory to porous media. This new expression is in
excellent agreement with the experiments (Fig. 5): we thus
obtained a direct relation between the porosity and the time
after which the structure fails.

Two caveats are the following: First, since we have not
done experiments as a function of temperature, we
cannot confirm that the process is really an activated one.
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FIG. 5 (color online). The slope of Fig. 4 as a function of the
porosity. The drawn line is the prediction from the scaling
arguments presented in the text.

Additionally, application of thermodynamic arguments to
fracture nucleation is controversial, since it does not take
into account the irreversible components of the fracture
process. We have incorporated these irreversible compo-
nents into the fracture energy I'. We do, however, confirm
that the delay is a consequence of a nucleation process of
the first critical crack and agrees with the Griffith theory.
This follows (i) from the random nature of the fracture
process and (ii) from the observation that the logarithm of
the lifetime varies as the inverse fourth power of the stress.
Second, plugging in typical values for o, I', and E, the
activation energy is found to be on the order of 107!2 J,
much larger than kzT. There can be two reasons for this
discrepancy. One possible reason could be that I" is much
smaller than that of bulk glass, because the sintering leads
to a relatively weak plane in the solid bridges. A measure-
ment of the fracture energy using the notch method [11]
yields ' =5+ Jm™2, close to the fracture energy of
glass; this therefore does not seem a plausible explanation
for the observed discrepancy. A more likely explanation is
that the irreversibility of the (micro) fracture process leads
to an important difference with classical reversible nuclea-
tion processes [7]. A small crack formed due to a fluctua-
tion will not disappear, and is a favorable starting point for
a further growth. Consequently, the existence of unhealed
microcracks leads to weaker regions, which accelerates the
failure. Also the heterogeneity leads to stress concentration
in the material, and so the local stress is larger than the
macroscopic one. Since the barrier varies as 1/0*, this is a
sizable effect. This is, in fact, well known for heteroge-
neous materials, and was also observed in other experi-
ments and in model calculations [6,7]: the disorder lowers
the barrier by an important amount. Therefore both the
irreversibility of the fracture process and the concentration
of the stress may provide a possible explanation for the

large difference between the activation energy calculated
with the macroscopic parameters and kg7 .

In conclusion, we have demonstrated that a direct rela-
tion between fracture probability and the structural and
mechanical properties of a disordered material can be
established. These results should not only be relevant for
the civil engineering industry, in which porous media are
widely used, and for oil recovery but could also have
implications for the strength of composite materials.
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