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� Resonance Contribution to Two-Photon Exchange in Electron-Proton Scattering
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We calculate the effects on the elastic electron-proton scattering cross section of the two-photon
exchange contribution with an intermediate � resonance. The � two-photon exchange contribution is
found to be smaller in magnitude than the previously evaluated nucleon contribution, with an opposite
sign at backward scattering angles. The sum of the nucleon and � two-photon exchange corrections has an
angular dependence compatible with both the polarization-transfer and the Rosenbluth methods of
measuring the nucleon electromagnetic form factors.
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The electromagnetic form factors reflect the essentially
nonlocal nature of the nucleon in its interactions with
photons. As the basic observables parametrizing nucleon
compositeness, the form factors have long been studied
both experimentally and theoretically. This interest has
been renewed recently due to the increased precision of
electron-proton scattering experiments and the availability
of two alternative methods of extracting the form factors
from the data: the Rosenbluth method—also known as the
longitudinal-transverse (LT) separation technique [1,2]—
and the polarization-transfer (PT) technique [3]. If one uses
the traditional one-photon exchange calculation to extract
the form factors, the two methods lead to apparently in-
compatible results: while the PT method yields a ratio of
the electric to magnetic form factors which falls off line-
arly with the square of the momentum transfer Q2, the LT
separation experiments give an approximately constant
ratio [3–5]. Finding an explanation of this discrepancy is
important for the use of electron-proton scattering as a
precise and reliable tool in hadronic physics.

Several theoretical studies [6,7] have suggested that the
problem could be at least partially resolved by including
higher-order two-photon exchange corrections in the
analysis of electron-proton scattering data, in addition to
the lowest-order one-photon exchange (Born) approxi-
mation. The recent explicit calculation [6] has shown that
with the two-photon exchange taken into account in the
analysis of electron-proton scattering, the ratio of the form
factors extracted from the LT separation measurements
becomes more compatible with the ratio from the PT
experiments. However, the two-photon exchange diagrams
calculated in Ref. [6] contained only nucleons in the inter-
mediate state; the contribution of other hadrons has not
been included until now. In view of the prominent role of
the � resonance (unlike other excited states) in many
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hadronic reactions, it is essential to evaluate its contribu-
tion to the two-photon exchange in electron-proton scat-
tering. Without an explicit calculation the results with only
the nucleon intermediate state can be viewed only as
suggestive in resolving the discrepancy. Some aspects of
the � contribution were addressed before [8], using various
approximate approaches.

This Letter presents a quantum field theoretical calcu-
lation of the two-photon exchange ‘‘box’’ and ‘‘crossed-
box’’ diagrams with a � resonance in the intermediate
state. We will show that the � and nucleon contributions
tend to partially cancel each other, their sum nevertheless
yielding a predominantly negative two-photon exchange
correction. The modified cross section has an angular
dependence consistent with both the LT separation and
PT measurements of the form factors.

We consider scattering of electrons (massme � 0:511�
10�3 GeV) off protons (mass MN � 0:938 GeV) with the
four-momenta assigned as e�p1� � p�p2� ! e�p3� �
p�p4�. The differential cross section for this process is
written in the form d� � d�B�1� �N � ��� where d�B
is the lowest-order Born contribution and �N (��) is the
higher-order correction obtained from two-photon ex-
change diagrams containing nucleons (�’s) in the inter-
mediate state. (Other higher-order effects—such as the
vacuum polarization and the electron-photon vertex cor-
rections—are known [9] to be irrelevant to the differences
between the PT and LT analyses; we therefore focus here
on the two-photon exchange effects only.) It is convenient
to divide d� by the well-known factor describing the
scattering from a structureless ‘‘proton’’ and thus use the
reduced cross section

d�R �
�
G2
M�Q

2� �
�
�
G2
E�Q

2�

�
�1� �N � ���: (1)
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Here the Born contribution is written in terms of the
electric and magnetic form factors of the proton, GE�Q

2�
and GM�Q2�, which are functions of the momentum trans-
fer squared Q2 � �q2 � 4�M2

N � ��p1 � p3�
2. The kin-

ematic variable � is related to the scattering angle �
through � � 	1� 2�1� ��tan2��=2�
�1, which is equal
to the photon polarization in the Born approximation.

We denote the Born scattering amplitude as MB and the
two-photon exchange amplitudes with the nucleon and �
intermediate states as M��

N and M��
� , respectively.

From the equation d� � d�B�1� �N � ��� � jMB�
M��

N �M��
� j

2, where d�B � jMBj
2, we derive to first

order in the electromagnetic coupling e2=�4�� � 1=137:

�N;� � 2
Re�My

BM
��
N;��

jMBj
2 : (2)

The nucleon part �N of the two-photon exchange was
analyzed in Ref. [6]. Below we evaluate the � two-photon
exchange contribution ��. The scattering amplitude M��

�
is given by the sum of the box and crossed-box loop
diagrams depicted in Fig. 1.

We use the �N� vertex of the following form [10]:

��	��!N�p;q�� iV
�	
�in�p;q�

� i
eF��q

2�

2M2
�

fg1	g�	 6p6q�p��	 6q����	p �q
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�g2	p
�q	�g�	p �q


��g3=M��	q
2�p��	�g�	 6p�

�q��q	 6p��	p �q�
g�5T3; (3)

where M� � 1:232 GeV is the � mass, p	 and q� are the
four-momenta of the incoming � and photon, respectively,
T3 is the isospin transition operator, and g1, g2, and g3 are
the coupling constants. An analysis of Eq. (3) in the � rest
frame suggests that g1, g2 � g1, and g3 may be interpreted
as magnetic, electric, and Coulomb components, respec-
tively, of the �N� vertex. The form factor in Eq. (3) is
necessary for ultraviolet regularization of the loop integrals
evaluated below; we use the simple dipole form F��q2� �

�4
�=��

2
� � q

2�2, where �� is the cutoff. The form factor
entails some model dependence of our results, which is
unavoidable in any dynamical hadronic calculation. The
vertex with an outgoing � is given by �	��N!��p; q� �
1
p p

3

p
4

p
2

k q−k
∆

FIG. 1. Two-photon exchange box and crossed-box graphs for
electron-proton scattering with a � intermediate state.
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iV	��out�p; q� � �0	�
�	
��!N�p; q�


y�0, with p	 and q� the
four-momenta of the outgoing � and incoming photon,
respectively. The �N� vertex is orthogonal to the four-
momenta of both the photon and the �: q���	��!N�p; q� �
0 and p	��	��!N�p; q� � 0. The first of these equations
ensures the usual electromagnetic gauge invariance of the
calculation while the second allows us to use only the
physical spin 3=2 component,

S�
	
�p� �

�i
6p�M� � i0

P 3=2
	
 �p�;

P 3=2
	
 �p� � g	
 �

1

3
�	�
 �

1

3p2 �6p�	p
 � p	�
 6p�;

(4)

of the Rarita-Schwinger propagator, the background spin
1=2 component vanishing when contracted with the adja-
cent �N� vertices [11]. At present we do not include a
width in the � propagator as its influence on the unpolar-
ized cross section should be small.

The loop integrals corresponding to the box and crossed-
box diagrams in Fig. 1 can be written as

M ��
� � �e

4
Z d4k

�2��4
N�

box�k�
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box�k�

� e4
Z d4k

�2��4
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;

(5)

with the numerators and denominators given by

N�
box�k� � �U�p4�V

�	
�in�p2 � k; q� k�	6p2 � 6k�M�


� P 3=2
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� 	6p1 � 6k�me
��u�p1�; (6)
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e
	�p2�k�
2�M2

�
,
D�
x�box�k� � D�

box�k�jp1�k!p3�k, where U and u denote the
proton and electron four-spinor wave functions, respec-
tively. Compared to the case of the nucleon [6], the pres-
ence of a � in the intermediate state entails a more
complicated structure of the numerator. Also the loop
integrals with a � are not infrared divergent, in contrast
with the nucleon contribution where the infrared part is
very important [9]. The evaluation of Eq. (5) involves
preliminary algebraic manipulations to effect cancellations
between terms in the numerators and denominators and
subsequent integration of the thus simplified expressions.
The result is obtained analytically in terms of the standard
Passarino-Veltman dilogarithm functions [12]. In the cal-
culation we used the computer package FEYNCALC [13].
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The first and second loop integrals in Eq. (5) must be
mutually related by crossing symmetry, which can be
formulated in terms of the numerator of Eq. (2) using the
Mandelstam variables s � �p1 � p2�

2, t � �p1 � p3�
2,

and u � �p2 � p3�
2 � 2M2

N � 2m2
e � t� s. Denoting

f���s; t� �My
BM

��
� and writing it as the sum f���s; t� �

f��box�s; t� � f
��
x�box�s; t�, where the first (second) term is

calculated using only the first (second) integral in
Eq. (5), the crossing symmetry requires that f��x-box�s; t� �
�f��box�u; t�ju�2M2

N�2m2
e�t�s. We calculated the integrals in

Eq. (5) explicitly and checked that our results obey this
constraint.

The � two-photon exchange correction to the differen-
tial cross section can be expressed as a quadratic form in
the �N� coupling constants gM � g1, gE � g2 � g1, and
gC � g3: �� � CMg

2
M � CMEgMgE � CEg

2
E � CCg

2
C �

CECgEgC � CMCgMgC with the coefficients depending
on the kinematical variables. The relative contributions
of the coupling constants gM, gE, and gC to �� can be
assessed from Table I, where the CM, CME, etc., are given
as functions of � for a fixed Q2. Here we used the dipole
�N� form factor with the cutoff �� � 0:84 GeV, which
describes a � resonance whose mean-square radius is
comparable to that of the nucleon. This choice is consistent
with various parametrizations from pion electroproduction
[14].

In the following we discuss the results obtained with the
fixed coupling constants gM � 7 and gE � 2. These cou-
plings were used in the dressed K-matrix model [10]
(adjusted for a different normalization of the vertex used
in the present calculation), yielding a good coupled-
channel description of pion-nucleon scattering, pion photo-
production, and Compton scattering at low and intermedi-
ate energies. In particular, the E2=M1 ratio obtained in
Ref. [10] is REM � �3%, in agreement with the PDG [15]
value: ��2:5� 0:5�%. Recent analyses [14] of pion elec-
troproduction suggest that the Coulomb coupling constant
gC is small and negative. In our calculation we vary gC in
the range 	�2; 0
. With these values of gM, gE, and gC one
can see from Table I that the magnetic coupling dominates
TABLE I. The � dependence of the coefficients CM;ME;E;C at
Q2 � 3 GeV2 (CEC;MC < 10�10 for any kinematics considered).

� CM � 104 CME � 104 CE � 104 CC � 104

0.1 2.92 1.49 �1:64 �1:09
0.2 2.53 0.94 �1:61 �1:00
0.3 2.17 0.50 �1:57 �0:88
0.4 1.83 0.14 �1:52 �0:72
0.5 1.54 �0:11 �1:45 �0:50
0.6 1.23 �0:32 �1:37 �0:21
0.7 0.95 �0:46 �1:27 0.18
0.8 0.65 �0:55 �1:15 0.79
0.9 0.31 �0:57 �0:98 1.98
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the � two-photon exchange correction, whereas the elec-
tric coupling has a much smaller effect. Since the contri-
bution of the Coulomb component is strongly suppressed
(not exceeding 0.2%), we omit it from further discussion,
setting gC � 0 in the rest of the Letter.

The � dependence of the sum of the � and nucleon two-
photon exchange corrections is shown in Fig. 2, for two
fixed values of Q2. The dependence on the �N� form
factor can be seen by comparing the results obtained
with the cutoffs �� � 0:84 and 0:68 GeV (the latter
choice corresponds to a � that is spatially ‘‘bigger’’ than
the nucleon). The purely nucleon contribution, shown for
comparison, was calculated as in Ref. [6] using the �NN
form factors extracted from the PT experiments [3,4]. The
� correction is more prominent at higher momentum trans-
fers. The � tends to reduce the effect of the nucleon two-
photon exchange, making the modulus of the negative
nucleon correction somewhat smaller at backward angles
(i.e., at low �). The combined effect of the nucleon and �
two-photon exchanges produces a negative correction to
the cross section at small �, decreasing in magnitude as �
increases. (The diminishing of the two-photon exchange
correction at forward angles is consistent with the analysis
of electron-proton and positron-proton scattering data
[16].) The main features of the � contribution—its small-
ness and its tendency to attenuate the nucleon contribution
at backward angles—are insensitive to the �N� form
factor, being to that extent model independent. The de-
tailed interplay between the � and the nucleon contribu-
tions is more complicated at forward angles, as can be seen
from Fig. 2.

The calculated differential cross section is shown by the
solid lines in Fig. 3, including the Born term and the sum of
the two-photon exchange corrections �N � �� with the
nucleon and the � intermediate states. The reduced cross
section Eq. (1), scaled for convenience by the square of the
standard dipole form factorGD�Q

2� � 1=�1�Q2=0:842�2,
-0.02

-0.01

0.0 0.2 0.4 0.6 0.8 1.0

-0.04
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0.0
Q2=3 GeV2

2 [N + ] =0.84 GeV
2 [N + ] =0.68 GeV
2 [N]

FIG. 2. Sum of the nucleon (N) and � contributions to the two-
photon exchange correction to the electron-proton scattering
cross section, using two values of the cutoff ��.
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FIG. 3. Effect of adding the two-photon exchange to the Born
cross section, the latter evaluated with the nucleon form factors
from the PT experiment [3,4]. The reduced cross section is
scaled as described in the text. The data points are taken from
Refs. [1,2].
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is compared in Fig. 3 with the LT separation measurements
from SLAC [1] (at Q2 � 4 and 6 GeV2) and JLab [2] (at
Q2 � 2:64 GeV2). The dotted lines show the Born contri-
bution alone, using the nucleon form factors GE;M�Q

2�
taken from the analysis of the JLab PT experiment [3,4].
One can see that including only the Born term is inade-
quate in the analysis of the data. The addition of the two-
photon exchange correction increases the slope of the cross
section, also exhibiting some nonlinearity in �. Thus the
results of the PT and LT separation experiments become
essentially compatible by including the nucleon and �
two-photon exchange corrections.

To summarize, we calculated the correction to the
electron-proton scattering cross section due to the two-
photon exchange with a � intermediate state, treated on
the same footing as the intermediate nucleon contribution.
For realistic choices of the �N� vertex we found that the �
contribution alters the cross section by an amount from
�1% to�2%, and is largest at backward scattering angles.
For the cross section obtained using the LT separation
technique, the � two-photon exchange contribution
slightly reduces the magnitude of the (negative) nucleon
correction. Generally, the cross section including the nu-
cleon and � two-photon exchange corrections has the
angular dependence that can accommodate the results of
both the LT separation and PT methods of measuring the
nucleon form factors. This calculation therefore provides
explicit and compelling evidence that the two-photon ex-
change contribution (with the lowest mass, N and � inter-
mediate states) can resolve the form factor discrepancy.
To reconcile these two methods completely, theoretical
analyses of the data might need additional ingredients.
17250
For example, one may take into account the dependence
of the �NN and �N� vertices on the hadronic off-shell
momenta (as was suggested in [17]). Heavier hadron reso-
nances or quark degrees of freedom should also become
important at higher momentum transfers (see, e.g., [18]).
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