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The Spectral Dimension of the Universe is Scale Dependent
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We measure the spectral dimension of universes emerging from nonperturbative quantum gravity,
defined through state sums of causal triangulated geometries. While four dimensional on large scales, the
quantum universe appears two dimensional at short distances. We conclude that quantum gravity may be
“self-renormalizing’’ at the Planck scale, by virtue of a mechanism of dynamical dimensional reduction.
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Quantum gravity as an ultraviolet regulator? —A shared
hope of researchers in otherwise disparate approaches to
quantum gravity is that the microstructure of space and
time may provide a physical regulator for the ultraviolet
infinities encountered in perturbative quantum field theory.
The outstanding challenge is to construct a consistent
quantum description of this highly nonperturbative gravi-
tational regime that stands a chance of being physically
correct.

Slow progress in the quest for quantum gravity has not
hindered speculation on what kind of mechanism may be
responsible for resolving the short-distance singularities. A
recurrent idea is the existence of a minimal length scale,
often in terms of a characteristic Planck-scale unit of
length in scenarios where the spacetime at short distances
is fundamentally discrete.

The alternative we will advance here is based on new
results from an analysis of the properties of quantum
universes generated in the nonperturbative and
background-independent causal dynamical triangulations
(CDT) approach to quantum gravity. As shown in [1,2],
they have a number of appealing macroscopic properties:
first, their scaling behavior as a function of the spacetime
volume is that of genuine isotropic and homogeneous
four-dimensional worlds. Second, after integrating out
all dynamical variables but the scale factor a(r) in the
full quantum theory, the correlation function between
scale factors at different (proper) times 7 is described
by the simplest minisuperspace model used in quantum
cosmology.

We have recently begun an analysis of the microscopic
properties of these quantum spacetimes. As in previous
work, their geometry can be probed in a rather direct
manner through Monte Carlo simulations and measure-
ments. At small scales, it exhibits neither fundamental
discreteness nor indication of a minimal length scale.
Instead, we have found evidence of a fractal structure
(see [3], which also contains a detailed technical account
of the numerical setup). What we report on in this Letter is
a most remarkable finding concerning the universes’ spec-
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tral dimension, a diffeomorphism-invariant quantity ob-
tained from studying diffusion on the quantum ensemble
of geometries. On large scales and within measuring ac-
curacy, it is equal to four, in agreement with earlier mea-
surements of the large-scale dimensionality based on the
scale factor. Surprisingly, the spectral dimension turns out
to be scale dependent and decreases smoothly from four to
a value of around two as the quantum spacetime is probed
at ever smaller distances. This suggests a picture of physics
at the Planck scale which is radically different from fre-
quently invoked scenarios of fundamental discreteness:
through the dynamical generation of a scale-dependent
dimensionality, nonperturbative quantum gravity provides
an effective ultraviolet cutoff through dynamical dimen-
sional reduction.

The spectral dimension.—A diffusion process on a
d-dimensional Euclidean geometry with a fixed, smooth
metric g, (&) is governed by the diffusion equation

d
%Kg(f’ fO; 0-) = AgKg(fx fO; 0-): (1)

where o is a fictitious diffusion time, Ag the Laplace
operator corresponding to g,,(£), and K (&, &y; o) the
probability density of diffusion from £ to &, in diffusion
time o. We will consider processes which are initially
peaked at some point &,
8¢ — &)
K(& £y o =0) = ——=. 2)
Vdetg(¢)
A quantity that is easier to measure than K, in numerical
simulations is the average return probability

P,(o) = % /d"fy/detg(f)Kg(f, & 0), 3)

where V = [ d?£&,/detg(£) is the spacetime volume. Note
that P (o) is a diffeomorphism-invariant quantity.

For an infinite flat space, the solution to Eq. (1) is simply
given by
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where d, (&, &)) denotes the geodesic distance between &
and &,. It follows that /o is an effective measure of the
linear spread of the Gaussian at diffusion time . Because
of Py(o)=1/ a¥/2 in the flat case, we can extract the
dimension d of the manifold by taking the logarithmic
derivative,

Kg(f» 50;0-) = gab(g) = 5ab’ (4)

dlogP,(0)
dlogo

d, &)

independent of .

For curved spacetimes and/or finite spacetime volume V
one can still use Eq. (5) to extract the dimension, but there
will be corrections for sufficiently large o. For finite
volume, in particular, P (o) goes to one for o > y2/d
since the zero mode of the Laplacian —A, will dominate
the diffusion in this region. For a given diffusion time o the
behavior of P, (o) is determined by eigenvalues A, of —A,
with A, = 1/0, and the contribution from higher eigen-
values is exponentially suppressed. Like in the flat case,
large o is related to diffusion which probes spacetime at
large scales, whereas small o probes short distances.

We will use the return probability to determine an ef-
fective dimensionality of quantum spacetime, which in our
nonperturbative path integral formulation amounts to
studying diffusion on an entire ensemble of curved,
Euclidean(ized) geometries. Since the return probability
P, (o) in (3) is invariant under reparametrizations, one can
define the quantum average Py(o) of P,(o) over all
equivalence classes [ g, | of metrics with a given spacetime
volume V by

1
PY(o)=- [ D[gub]e*ﬂwa( [ d' ¢ Jdetg - v)Pgw),
©)

where Sj(g,;) is the (Euclidean) Einstein-Hilbert action of
gap(€) and Z, the partition function (path integral) for
geometries with fixed volume V. Given the definition (6),
Py (o) is gauge invariant whenever the functional integral
over geometries is defined gauge invariantly. We have no
a priori knowledge of how the functional average (6) will
affect corrections to (5) due to fixed nonflat geometries. If
the example of two dimensional Euclidean quantum grav-
ity is anything to go by (see [4—7])—as we will assume in
what follows—any reference to the curvature terms will
average out and the corrections to (5) will be a function of
only o and V.

It is straightforward to generalize the diffusion process
and its associated probability density to the piecewise
linear geometries that appear in the path integral of CDT
[3]. In analogy with the ordinary path integral for a parti-
cle, one would expect that in the continuum limit a typical
geometry in the quantum ensemble is still continuous, but
nowhere differentiable; for example, it could be fractal. In

fact, diffusion on fractal structures is well studied in sta-
tistical physics [8], and there the return probability takes
the form

Pu() = o PP (), )

where N is the “volume” associated with the fractal struc-
ture and Dy is the so-called spectral dimension, which is
not necessarily an integer. An example of fractal structures
are branched polymers, which generically have a spectral
dimension Dg = 4/3 [4,9]. The function F(x) in (7) goes
to 1 for x — 0, i.e., for large N, and falls off at least
exponentially for x > 1 in the lower-dimensional quantum
gravity theories studied so far [4-7].

For the nonperturbative gravitational path integral de-
fined by CDT, we expect the same functional form (7),
where N now stands for the discrete four-volume, given in
terms of the number of four-simplices of a triangulation.
As above in (5), we can now extract the value of the fractal
dimension Dg by measuring the logarithmic derivative,

dlogPy (o)

D =-2
s(@) dlogo

®)
as long as the diffusion time o is not much larger than
N%Ps_ From previous numerical simulations of 2D quan-
tum gravity in terms of dynamical triangulations [5—7], we
already know that Eq. (8) is not reliable for arbitrary
diffusion times. The observed behavior of Dg(o) for a
given triangulation will typically exhibit irregularities for
the smallest o, caused by the lattice discretization, and
then enter a long and stable regime where the spectral
dimension is independent of o, before finite-size effects
start to dominate and Dg(o) goes to zero. [Often the
behavior of Py(o) for odd and even numbers of diffusion
steps o will be quite different for small o and merge only
for o = 20-30.—The origin of this asymmetry is illus-
trated by the (extreme) example of diffusion on a one-
dimensional piecewise straight space, where the return
probability simply vanishes for any odd number o of
steps.]

Measuring the spectral dimension.—In the CDT ap-
proach, quantum gravity is defined as the continuum limit
of a regularized version of the nonperturbative gravita-
tional path integral [10,11]. The set of spacetime geome-
tries to be summed over is represented by a class of causal
four-dimensional piecewise flat manifolds (“‘triangula-
tions”’). Every member 7' of the ensemble of simplicial
spacetimes can be wick rotated to a unique Euclidean
piecewise flat geometry, whereupon the path integral as-
sumes the form of a partition function

1

T T

e SeM) 9)

where Cr is a combinatorial symmetry factor and Sz(7)
the Euclidean Einstein-Regge action of the triangulation 7.
All geometries are assembled from elementary building
blocks, so-called four-simplices (four dimensional ana-
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logues of flat triangles). They share a global, discrete
version of proper time, with respect to which no topology
changes of the spatial triangulations are allowed. For an
explicit and precise definition of the class of piecewise
linear geometries 7 which appear in the sum (9) we refer to
[11]. In the continuum limit, the CDT time 7 becomes
proportional to the cosmological proper time of a conven-
tional minisuperspace model [2]. (The proper time 7 of
CDT—although invariantly defined from a geometric
point of view—does not necessarily coincide with a physi-
cal time appearing explicitly in the formulation of physical
observables, for example, two-point functions.)

We extract information about the continuum limit of the
theory by Monte Carlo simulations and a finite-size scaling
analysis of (9). Further details about the updating moves
for the geometry and the numerical setup can be found in
[3,11], respectively. For computer-technical reasons we
keep the total spacetime volume N approximately fixed
during simulations. All the results obtained can be related
by an inverse Laplace transform to those for the geometric
ensemble with the volume constraint absent.

Our measurements of the spectral dimension were per-
formed in the phase of the statistical model (9) which
generates a quantum geometry extended in both space
and time, with large-scale four-dimensional scaling prop-
erties [1,3]. As discussed in [2], the quantum universe we
generate is a “‘bounce” in the Euclidean sector of the
theory. It has a characteristic shape when we plot its
three-volume [equivalently, its scale factor a(7)] as a func-
tion of proper time 7. The universe starts out with a
minimal three-volume, increases to a maximum, and then
decreases in a symmetric fashion back to a minimal value.
As shown in [2], the underlying dynamics of the scale
factor a(7) solves the equation of motion of a simple
minisuperspace action for a(7), and is that of a bounce,
with total Euclidean spacetime volume determined by the
volume at which the simulation is performed. It is on an
ensemble of geometries of this type that we made our
measurements. Since we are interested in the bulk proper-
ties of the diffusion, we always started the process from a
simplex in the constant-time slice where a(7) is maximal.
The simulations to determine the universe’s spacetime
spectral dimension were performed for geometries of
proper-time extension ¢ = 80 and a discrete volume of up
to approximately N = 181.000 four-simplices, and the
diffusion was followed for up to o,,, = 400 time steps.

Figure 1 summarizes our measurements of the spectral
dimension Dg(o) at the maximal spacetime volume, ex-
tracted as the logarithmic derivative (8) from a discrete
implementation of the diffusion process. The (envelopes
of the) error bars represent the errors coming from aver-
aging over 400 different measurements of diffusion pro-
cesses, performed for independent starting points and sta-
tistically independent configurations 7 generated by the
Monte Carlo simulation. As observed previously in other
systems of random geometry, we have found a different
behavior of Dg(o) for odd and even (discrete) diffusion

times o for small o. In order to eliminate this short-
distance lattice artifact, we have only included the region
o = 40 for which the odd and even curves coincide, both
in Fig. 1 and in determining the spectral dimension.

The data points along the central curve in Fig. 1 repre-
sent our best approximation to D¢(c) in the limit of infinite
spacetime volume. Their monotonic increase as a function
of o indicates that we have not yet reached the region
where finite-volume effects dominate (in the form of the
constant mode of the Laplacian). The remarkable feature
of the behavior of the spectral dimension illustrated in
Fig. 1 is that it is qualitatively different from what has
been observed in similar systems up to now, be it in two-
dimensional Euclidean quantum gravity with or without
matter [5] or for the spatial hypermanifolds of our present
CDT setup in four dimensions [3]. In these cases, imme-
diately following the region of even-odd asymmetry for
small o, Dg¢(o) stabilizes in a horizontal line, indicating

the presence of a single value D(SO) characterizing the
spectral dimension of the system, independent of the scale
at which the diffusion process probes the geometry.
Apparently, this is not the case for the spectral spacetime
dimension in quantum gravity defined by CDT. The mea-
surements shown in Fig. 1 indicate that Dg(o) changes
with the scale probed. [The o dependence of Dg(o) does
not come from the finite-size function F(a/N*Ps) in (7),
which is well approximated by F =~ 1 in the o range
considered, as has been checked by studying the diffusion
for a variety of different values N << 181.000 [3].] In order
to quantify this scale dependence we have attempted a
variety of fits in the available data range o € [40, 400].
Among curves with three free parameters of the form
const. + asymptotic form (The two alternatives consid-
ered were a — be™°? and a — b/c°.), a fit of the form

0 100 200 300 200
()

FIG. 1 (color online). The data points along the central curve
show the spectral dimension Dg(o) of the universe as a function
of the diffusion time o. Superimposed is a best fit, the continu-
ous curve Dg(o) = 4.02 — 119/(54 + o). The two outer curves
quantify the error bars, which increase linearly with o, due to
(8). (Measurements taken for a quantum universe with 181.000
four-simplices.)
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dlogP b
_,dlogPlo) _ (10)
dlogo o+c
agrees best with the data. In Fig. 1, the curve
119
D =4.02 — 11
s(o) s (11)

has been superimposed on the data, where the three con-
stants were determined from the entire data range o €
[40, 400]. Although both b and ¢ individually are slightly
altered when one varies the range of o, their ratio b/c as
well as the constant a remain fairly stable. Integrating
relation (10), we have

1
P(o) ~ R 12
(@) a1 + ¢/ o)b/?¢ (12)
implying a behavior
—a/2 for large o
Plo)~17 ge g, 1
(@) {(T—(“_b/")/z for small o. (13)

Our interpretation of Egs. (12) and (13) is that the quantum
geometry generated by CDT does not have a self-similar
structure at all distances, but instead has a scale-dependent
spectral dimension which increases continuously from a —
b/c to a with increasing distance.

Taking into account the variation of a in Eq. (10) when
using various cuts [ o pin, O max ] for the range of o, as well
as different weightings of the errors, we obtain the asymp-
totic value

Dg(o = 00) = 4.02 + 0.1, (14)

which means that the spectral dimension extracted from
the large-o behavior (which probes the long-distance
structure of spacetime) is compatible with four. On the
other hand, the “‘short-distance spectral dimension,”” ob-
tained by extrapolating Eq. (12) to o — 0 is given by

Dg(o = 0) = 1.80 £ 0.25, (15)

and thus is compatible with the integer value two.

Discussion.—The continuous change of spectral dimen-
sion described in this Letter constitutes to our knowledge
the first dynamical derivation of a scale-dependent dimen-
sion in full quantum gravity. (In the so-called exact renor-
malization group approach to Euclidean quantum gravity, a
similar reduction has been observed recently in an
Einstein-Hilbert truncation [12].) It is natural to conjecture
it will provide an effective short-distance cutoff by which
the nonperturbative formulation of quantum gravity em-
ployed here, causal dynamical triangulations, evades the
ultraviolet infinities of perturbative quantum gravity.
Contrary to current folklore (see [13] for a review), this
is done without appealing to short-scale discreteness or
abandoning geometric concepts altogether.

Translating our lattice results to a continuum notation
requires a ‘“‘dimensional transmutation” to dimensionful
quantities, in accordance with the renormalization of the

lattice theory. Because of the perturbative nonrenormaliz-
ability of gravity, this is expected to be quite subtle. CDT
provides a concrete framework for addressing this issue
and we will return to it elsewhere. However, since o from
(1) can be assigned the length dimension two, and since we
expect the short-distance behavior of the theory to be
governed by the continuum gravitational coupling Gy, it
is tempting to write the continuum version of (10) as

(o) 1 1
VAT T5T T const. X Gy/o’

(16)
where const. is a constant of order one. Using the same
naive dimensional transmutation, one finds that our ‘“‘uni-
verse”” of 181.000 discrete building blocks has a spacetime
volume of the order of (20/p)* in terms of the Planck
length [p;, and that the diffusion with o = 400 steps cor-
responds to a linear diffusion depth of 20/p;, and is there-
fore of the same magnitude. The relation (16) describes
a universe whose spectral dimension is four on scales
large compared to the Planck scale. Below this scale,
the quantum-gravitational excitations of geometry lead
to a nonperturbative dynamical dimensional reduction
to two, a dimensionality where gravity is known to be
renormalizable.
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