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Harmonic Measure of Critical Curves
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Fractal geometry of critical curves appearing in 2D critical systems is characterized by their harmonic
measure. For systems described by conformal field theories with central charge c � 1, scaling exponents
of the harmonic measure have been computed by Duplantier [Phys. Rev. Lett. 84, 1363 (2000)] by relating
the problem to boundary two-dimensional gravity. We present a simple argument connecting the harmonic
measure of critical curves to operators obtained by fusion of primary fields and compute characteristics of
the fractal geometry by means of regular methods of conformal field theory. The method is not limited to
theories with c � 1.
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FIG. 1. Harmonic measure of a critical curve evaluated in the
Introduction.—Two-dimensional (2D) statistical models
typically exhibit stochastic curves, such as external perim-
eters of critical clusters in the Potts model or fluctuating
loops in models of Refs. [1–3]. In the critical regime, these
curves are fractal. Despite a long history of studying
critical phenomena, inquiries into the stochastic geometry
of the critical curves are relatively recent. Traditional
conformal field theory (CFT) [4] concentrates on correla-
tions of local fields and essentially leaves their relation to
geometrical objects, such as critical curves, unclear.
Duplantier, in a seminal paper [5], found the harmonic
multifractal spectrum of critical curves arising in critical
systems with the central charge c � 1 [see Eqs. (8) and
(9)]. His method used an intriguing connection between
CFT and 2D boundary quantum gravity. More recently, the
stochastic Loewner evolution approach was successfully
used for the same purpose [6]. Both methods are interesting
and powerful but somewhat foreign to traditional CFT
approach and not obviously susceptible to generalizations.

In this Letter, we show that geometrical properties of
critical curves are naturally linked to correlation functions
of primary fields and can be studied within the regular
framework of CFT, not limited to theories with c � 1. Our
arguments may also shed some light on the boundary
quantum gravity itself.

Harmonic measure of critical curves.—A basic charac-
teristic of simple curves is the harmonic measure [7]. It has
a simple electrostatic interpretation. Consider a closed
curve � made of a conducting material and carrying a total
electric charge of one. Harmonic measure of any part of the
curve is the charge of this part. In what follows, we will
pick a point of interest z0 on the curve and consider a disk
of a small radius r centered at z0 as in Fig. 1. It surrounds a
small part of the curve, and we define ��r� to be harmonic
measure of this part.

If a curve is a closed loop lying entirely in the bulk (i.e.,
it does not touch the system boundaries), all its points are
statistically identical. We can also consider the case when a
curve emerges from a boundary and the case when a curve
has one or both dangling ends in the bulk. The latter is
achieved by inserting into the system a small isolated
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boundary (almost a puncture) so that the curve ends on
this boundary. Statistics of harmonic measure is different
in the following three cases [5] depicted in Fig. 1: (i) bulk,
if z0 lies in the bulk and is not an end point; (ii) boundary, if
z0 is a point where � is connected with the system bound-
ary; (iii) extremity, if z0 is a dangling end point of � in the
bulk. More generally, one may consider n curves emanat-
ing from the boundary or n curves meeting at a point in the
bulk. The bulk and extremity cases correspond to n � 2
and n � 1.

Let us define a conformal map w�z� of the exterior of �
to some standard domain. For a closed loop in the bulk, it
can be the exterior of a unit disk, while, for a curve with
both ends on the system boundary or a ‘‘sprout,’’ the upper
half plane is more convenient. We normalize the map so
that the point of interest z0 is mapped onto itself, choose it
to be the origin z0 � 0, w�0� � 0, and demand that
w0�1� � 1. The moments of harmonic measure of critical
curves scale at small r with nontrivial exponents. The
relations ��r� � jw�r�j � rjw0�r�j follow from the defini-
tion of��r�. Therefore, the scaling of the moments of��r�
is determined by that of jw0�r�j:

� jw0�r�jh � �r��h�; r! 0: (1)
bulk, on the system boundary, and at an extremity.
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The notation � � � � � stands for statistical average over the
ensemble of critical curves. The notation h� � �i is reserved
for correlators of CFT.

Harmonic measure and fluctuating geometry.—The
scaling of the harmonic measure may be computed by
considering CFT correlation functions. It is easiest to start
with a point where a curve � connects with the system
boundary. We assume that the system occupies the interior
of an annulus. The curve starts from the large circle at z0 �
0, ending at the large circle at a point L.

The partition function Z�0; L�, restricted to configura-
tions that contain a curve � connecting the points 0 and L,
is given by the correlator of two appropriate boundary
operators B changing boundary conditions [8]. These op-
erators create curves emanating from the boundary [9]:

Z�0; L�=Z � hB�0�B�L�iH; (2)

where Z is the unrestricted partition function. The subscript
of h� � �i refers to the domain of definition, in this case the
upper half plane.

This correlator, as indeed any correlator containing two
boundary operators B, can be computed in two steps: In
the first step we pick a particular realization of the curve �.
Within each realization, the curve � is the boundary sep-
arating two independent systems—the interior and the
exterior of �—with partition functions Zint

� and Zext
� , re-

spectively. These are stochastic objects that depend on the
fluctuating geometry of �. At the second step we sum over
the realizations of �. We thus obtain

Z�0; L� �� Zint
� Z

ext
� � : (3)

We further insert an additional boundary primary opera-
tor Oh�r� of conformal weight h sufficiently close to 0 and
a second copy Oh�1�. Both act as a source of harmonic
measure. We thus consider the correlation function

hOh�r�B�0�B�L�Oh�1�iH: (4)

Since we are interested only in the r dependence of the
correlator, we can fuse together the distant primary fields:
B�L� 	Oh�1� � ��1�. We therefore consider the r de-
pendence of a 3-point function

hOh�r�B�0���1�iH (5)

and show that it yields the statistics of the harmonic
measure.

Decomposing the upper half plane into the exterior and
the interior of � as before, we can rewrite (4) as the average
over the fluctuating geometry of �:

� hOh�r�Oh�1�i
ext
� Zint

� Zext
� � =Z: (6)

Here the domain of the definition of the correlator of
primary fields is the exterior of �. This correlator is statis-
tically independent from the other two factors in the nu-
merator of (6) in the limit r
 jLj. We are left with the
correlation function hOh�r�Oh�1�i

ext
� of two primary fields

of boundary CFT, further averaged over all configuration
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of the boundary �. It is equal to the 3-point correlation
function (5).

Now we apply the conformal transformation w�z�,
which maps the exterior of � onto the upper half plane.
Being a primary operator of conformal weight h, Oh�r�
transforms as Oh ! Oh�w�r��jw0�r�jh, while Oh�1� does
not change because of the normalization of w�z�. The
transformation relates the correlation function in the exte-
rior of � to a correlation function in the upper half plane:
hOh�w�r��Oh�1�i

ext
� � jw

0�r�jhhOh�w�r��Oh�1�iH. The
latter does not depend on r but rather on the size of the
entire system.

Summing up, we obtain a scaling relation between the
moments of the harmonic measure near the boundary and
correlation functions of primary operators [10]:

hOh�r�B�0���1�iH� � jw0�r�jh �; r
 jLj: (7)

This scaling relation is the main result of the paper. It
allows us to reproduce the scaling of the harmonic measure
upon identification of the operators B.

The spectrum of the harmonic measure for CFTs with
c � 1.—The scaling exponents of � jw0�r�jh � in the bulk,
near the boundary, and near an extremity are denoted
�bulk�h�, ��h�, and �extr�h�, respectively. If we parame-
trize the central charge of the critical system by c � 1�

6�
���������
4=�

p
�

���������
�=4

p
�2, where 0< � � 4, then the exponents

obtained in Ref. [5] read

�extr � �h=2� ��=8; �bulk � �extr � �=2: (8)

The boundary exponent happens to be identical to the
dressed gravitational dimension. This is the dimension of
a primary field on a random surface, which dimension on a
flat space is h. They are connected by the equation [11]

���� �string�

1� �string
� h; 1� �string �

4

�
: (9)

In order to derive these results along the lines presented
above, we must identify the operators creating critical
curves. In what follows, this result and its generalizations
to the case of n curves meeting at the same point will
appear in a compact form in Eqs. (15) and (18) in terms of
the charges of relevant operators.

Levels of a Gaussian field.—The relation between criti-
cal curves and operators of a boundary CFT is most trans-
parent upon representation as levels of a Gaussian field
[1,4,12].

A c � 1 CFT in an annulus D is described by a real
compactified Bose field’�z; �z�. In the normalization where
the radius of compactification is equal to 1, so that ’ ’
’� 2�, the classical action reads [2]:

S �
g

4�

Z
D
j ~r’j2 � i

e0

2�

Z
@D
K’�

Z
D
e2i’: (10)

Here K is the geodesic curvature of each component of the
system boundary, and the stiffness g and the ‘‘charge’’ e0

are related to � as g � 4=�, e0 � 1� 4=�. The last term in
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the action (10) represents the marginal part of a
2�-periodic locking potential.

We impose the boundary condition

@l’j@D � 0; (11)

where the derivative is taken along the boundary. The real
field’ is the sum of a holomorphic and an antiholomorphic
parts and a real zero-mode �0:

’�z; �z� � ��z� ���z� ��0: (12)

The fields ��z� and ��z� are glued together on the bound-
ary by the condition @l��z� � �@l��z�. Both parts can be
considered as one holomorphic field on a torus (Schottky
double) obtained by gluing the annulus to its reflected copy
along the boundaries.

We note that the Bose field ��z� ���z� is a pseudosca-
lar, meaning that in radial quantization it changes sign
under the reflection z! 1=�z. The gradient ~J � r’�z; �z�
is therefore an axial current. It is not conserved. The
conserved vector current ~j � r~’�z; �z� is the gradient of a
‘‘dual’’ scalar Bose field ~’�z; �z� � �i�4=�����z� ���z��
related to ’ through Cauchy-Riemann conditions. On the
boundary jzj � 1, the boundary condition (11) then means
that no vector current flows through the system boundary:
jnj@D � 0, Jlj@D � 0.

Fluctuating loops.—The critical curves have a simple
interpretation in terms of the Bose field. They are the level
lines ’�z; �z� � k� of the height function ’�z; �z�. The level
lines are nonintersecting plane loops which are identified
with boundaries of critical clusters in the Potts model or
lines in the O�n� model [1–3]. In this formulation, statis-
tical models represented by CFTs with c � 1 can be seen
as a gas of fluctuating loops. The loops are the current lines
of the vector current j, so that the direction of the current
orients with the loops. The boundary condition ensures that
the loops cannot cross the system boundaries and, further-
more, that the system boundaries themselves are loops.

In the Hamiltonian formalism of radial quantization, the
noncontractible loops C in the annulus represent coherent
states propagating along the cylinder � � logz. Coherent
states are defined by the condition ’�z; �z�jC; �0i �
�0jC; �0i, z 2 C. Contractible loops represent virtual
states. The partition function with the action (10) can be
seen as the overlap of the boundary coherent states.

A normalization of ’, customary in the CFT literature,
fixes g � 1

2 and introduces the notation �� �
���������
4=�

p
, �� �

�
���������
�=4

p
, 2�0 � �� � �� [4]. The radius of compactifica-

tion is then R �
���������
8=�

p
�

���
2
p
��. Below we proceed in the

physical normalization, where R � 1.
Primary operators.—In terms of the Bose field, the

primary operators read

O �e;m��z; �z� � eie’�z;�z�em~’�z;�z�; (13)

where e and m are ‘‘electric’’ and ‘‘magnetic’’ charges,
respectively, imposed by the operator.
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The holomorphic weight of this operator is h��� �
�2 � 2��0, where � � � 1

2 �e�� �m��� is the holomor-
phic charge. The antiholomorphic charge of (13) is �� �
� 1

2 �e�� �m���. It is also customary to label the primary
operators and their holomorphic charges by two numbers
r; s using the Kac table �r;s �

1
2 �1� r��� �

1
2 �1� s���.

Here r � 1�m, s � 1� e.
The magnetic operator with e � 0, m � 1 introduces a

defect line on which the value of the field ’ changes by the
compactification length 2�. The electric operator with e �
1, m � 0 picks up a phase difference 2� while going
around the magnetic operator. A general O�e;m� is the
composition of the two.

Operators representing critical curves [5,8,9].—The
magnetic operator with charge m, applied at the bound-
ary, changes the values of ’ by �m (since one can go
from one side of the operator to the other by half of a full
turn): O�0;m��0�’�x� � �’�x� �m���x��O�0;m��0�, where
��x� is the step function and x is the coordinate along the
boundary. Thus, it is a boundary condition changing op-
erator. In particular, O�0;1��0� changes the boundary condi-
tion by half the compactification length, just as a cluster
wall does, so it produces a critical curve emanating from
the system boundary at x � 0 in the direction normal to the
boundary. This is, therefore, the previously mentioned
operator B. It happens to be degenerate on level 2 and is
placed in the Kac table as �2;1. We can insert two such
operators on the external boundary of the annulus and the
other two on the central puncture in order to connect the
boundaries with two curves. These curves then divide the
annulus into two domains, each having the topology of a
disk.

Similarly, the boundary operator O�0;n� 
 �n�1;1 is de-
generate on level n� 1 and produces n curves. Its holo-
morphic charge is �n�1;1 � �

n
2��.

Pinning operator.—This operator creates n curves ema-
nating from a point in the bulk, that is, from a puncture.
The puncture, as any internal boundary, carries the electric
charge �e0. The combination of this charge and the mag-
netic charge associated with the creation of n curves iden-
tifies the bulk pinning operator as O��e0;n=2� with the
conformal charge �n=2;0 � �

n
4�� � �0. In the Kac clas-

sification, it is the field �n=2;0.
Screening operators.—The bulk magnetic operator with

the double magnetic charge O�0;2� cuts a loop and changes
the direction of each part by��, giving rise to a new loop
representing a virtual state. This operator must be mar-
ginal, which is the origin of the relation between the stiff-
ness and the screening charge e0 � g � 1. Another
marginal (i.e., screening) operator O�2;0� represents the
marginal part of the locking potential in (10).

Boundary exponents.—We have argued that the curve-
creating operator B in (7) is �2;1. Therefore, (7) reads

hOh�r��2;1�0���1�iH� � jw
0�r�jh �; (14)
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where the holomorphic charge of Oh is �h � �0����������������
�2

0 � h
q

and that of ��1� is 2�0 � �h � �2;1 [the choice
of dual charges is made unique by the condition ��0� � 0].

On the other hand, the scaling behavior of this correlator
is easily computed by regular means of Coulomb gas
technique [4]. It scales as r2�h�2;1 . The comparison yields
the result (9) written in a suggestive form:

��h� � 2�h�2;1; h � �h��h � 2�0�; (15)

where string susceptibility �string � 1� 4�2
21.

An immediate generalization of this formula ��n� �
2�h�n�1;1 � n� can be obtained by replacing �2;1 by
�n�1;1 in (14). It describes the statistics of harmonic
measure of n curves reaching the system boundary at the
same point.

Bulk exponents.—Similar arguments yield the value of
the bulk exponents. Let points 0 and L lie in the bulk and
consider a bulk correlator

hOh0 �r��1;0�0��1;0�L�Oh0 �1�i: (16)

The fields �1;0 ensure the existence of a closed curve �
connecting 0 and L. In the limit r
 jLj and because
we are interested only in the r behavior, we can fuse
�1;0�L� 	Oh0 �1� � ��1�, where the charge of � is
2�0 � �h0 � �1;0, and consider instead a 3-point function
hOh0 �r��1;0�0���1�i.

As in the boundary case, we argue that this correlator
equals � hOh0 �r�Oh0 �1�i

ext
� � up to a normalization. We

transform it into a correlator in a disk exterior via a
conformal map w�z�, which transforms � into a unit circle
centered at�i such that Oh0 �r� ! jw

0�r�j2h
0
Oh0 �w�r��. The

difference with the boundary case is that Oh0 now is a bulk
field in the presence of a circular system boundary. We
therefore fuse Oh0 �w�r�� with its image inside the disk
[approximately located at w��r�] and take the leading non-
trivial fusion product �w�r� � w��r��h�2h0Oh�0�. Here Oh
is a primary boundary field of a weight h. We determine h
through the neutrality condition 2�h0 � �2�0 � �h� �
2�0, yielding �h � 2�h0 . Since r is small, w�r� � w��r� �
rjw0�r�j. Summing up, we find the scaling behavior of the
original correlator:

hOh0 �r��1;0�0���1�i � rh�2h0 � jw0�r�jh � : (17)

On the other hand, scaling behavior of this correlator at
small r is easily found by regular CFT means: It scales as
r4�h0�1;0 . We thus obtain

�bulk�h� � 2h0 � h� 4�h0�1;0; (18)

which coincides with the result given in Eq. (8).
A replacement �1;0 ! �n=2;0 in (16) produces n curves

emanating from a given bulk point. Their scaling expo-
nents are obtained by replacing �1;0 ! �n=2;0 in (18)

��n�bulk�h� � �h=2� �h�2�n=2;0 � �0�: (19)
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If n is even, it gives a bulk exponent for the case when n=2
curves are passing through one point. The case n � 1
yields the extremity exponent �extr�h� of a single dangling
end in the bulk (8).

Discussion.—The method of computing the statistics of
the harmonic measure, discussed here, is amenable to
generalizations. For instance, one can compute multipoint
correlation functions. Another generalization is for curves
generated by conformal field theories with c > 1 [2,3]. In
particular, it has been shown in Ref. [13] that SU�2�k-Wess-
Zumino-Witten model generates critical curves identical to
those generated by its coset su�2�k � su�2�1=su�2�k�1 —a
unitary minimal model with � � 4 k�2

k�3 . Its substitution into
Eqs. (8) and (9) gives the scaling of the harmonic measure
for this case.
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