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Routes Towards Anderson-Like Localization of Bose-Einstein Condensates
in Disordered Optical Lattices

T. Schulte,1 S. Drenkelforth,1 J. Kruse,1 W. Ertmer,1 J. Arlt,1 K. Sacha,2 J. Zakrzewski,2 and M. Lewenstein3,4,*
1Institut für Quantenoptik, Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany

2Instytut Fizyki Mariana Smoluchowskiego, Uniwersytet Jagiellonski, PL-30-059 Krakow, Poland
3Institut für Theoretische Physik, Universität Hannover, D-30167 Hannover, Germany
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We investigate, both experimentally and theoretically, possible routes towards Anderson-like localiza-
tion of Bose-Einstein condensates in disordered potentials. The dependence of this quantum interference
effect on the nonlinear interactions and the shape of the disorder potential is investigated. Experiments
with an optical lattice and a superimposed disordered potential reveal the lack of Anderson localization. A
theoretical analysis shows that this absence is due to the large length scale of the disorder potential as well
as its screening by the nonlinear interactions. Further analysis shows that incommensurable superlattices
should allow for the observation of the crossover from the nonlinear screening regime to the Anderson
localized case within realistic experimental parameters.
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Disordered systems have played a central role in con-
densed matter physics in the last 50 years. Recently, it was
proposed that ultracold atomic gases may serve as a labo-
ratory for disordered quantum systems [1,2] and allow for
the experimental investigation of various open problems in
that field [3]. Some of these problems concern strongly
correlated systems [4], the realization of Bose [5,6] or
Fermi glasses [7], quantum spin glasses [8], and quantum
percolation [9]. This Letter addresses one of the most
important issues, namely, the interplay of Anderson local-
ization (AL) [10] and repulsive interactions [11]. This
interplay may lead to the creation of delocalized phases
both for fermions [12] and bosons [6]. The possible occur-
rence of AL has also been investigated theoretically for
weakly interacting Bose-Einstein condensates (BECs)
[13], and in this case it was shown that even moderate
nonlinear interaction counteracts the localization. As a
main result of this Letter we show that despite this diffi-
culty there exists an experimentally accessible regime
where Anderson-like localization can be realized with
present day techniques.

Several methods have been proposed to produce a dis-
ordered or quasidisordered potential for trapped atomic
gases. They include the use of speckle radiation [14],
incommensurable optical lattices [15], impurity atoms in
the sample [16], and the disorder that appears close to the
surface of atom chips [17]. Recently, first experiments
searching for effects of disorder in the dynamics of weakly
interacting BECs were realized [18].

In this Letter we shed new light on the interplay between
disorder and interactions by studying trapped BECs under
the influence of a disordered potential and a one dimen-
sional (1D) optical lattice (OL). The OL creates a periodic
potential and the randomness of the disordered potential
leads to AL for noninteracting particles [1]. We study how
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the presence of interactions affects nontrivial localization
in our necessarily finite system.

Our experiments were performed with 87Rb Bose-
Einstein condensates in an elongated magnetic trap (MT)
with axial and radial frequencies of!z � 2�� 14 Hz and
!? � 2�� 200 Hz, respectively. Further details of our
experimental apparatus were described previously [19].
The number of condensed atoms N was varied between
1:5� 104 and 8� 104. The OL was provided by a retro-
reflected laser beam at � � 825 nm superimposed on the
axial direction of the magnetic trap. The depth of the OL
was typically set to 6.5 Er, where the recoil energy is given
by Er � @2k2=2m. For this configuration the peak chemi-
cal potential varied between 0.25 Er and 0.5 Er. The
disorder potential (DP) was produced by projecting the
image of a randomly structured chrome substrate onto
the atoms giving rise to a spatially varying dipole potential
along the axial direction of the cloud. Because of the
resolution of the imaging system the minimal structure
size of the DP was limited to 7 �m. We define the depth
of the DP as twice the standard deviation of the dipole
potential, analogously to Ref. [18]. The combined potential
allowed for the first realization of an ultracold disordered
lattice gas.

After the production of the BEC in the MT, we per-
formed the following experimental sequence: We first
ramped up the OL potential over 60 ms, then the DP was
ramped up over another 60 ms, followed by a hold time of
20 ms. Finally all potentials were switched off and the
atomic density distribution was measured after 20 ms of
ballistic expansion using absorption imaging. Alternatively
we performed the same experiment without the OL.

Figure 1 shows typical absorption images for the case of
DP only and for the case of combined DP and OL. The
obtained density distributions show two characteristic fea-
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FIG. 1 (color online). Typical absorption images of a BEC
with N � 7� 104 released from the combined MT plus DP
(left column) and MT plus OL plus DP (right column). The
second row shows the column density and the third row shows
the result of a 1D simulation. The lattice depth was 6:5Er and the
DP had a depth of 0:2Er.
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tures. On one hand they display pronounced fringes and on
the other hand the axial size of the central peak is modified
with respect to the case without DP. We extract the axial
size of the peak by fitting the density with a parabolic
distribution. The resulting sizes are shown as a function
of the atom number in Fig. 2.

Both features can be attributed to the distribution of the
atoms into the wells of the DP. This can lead to a slight
fragmentation of the BEC and causes strong fringes in the
absorption images. These results are in good qualitative
agreement with a numerical simulation based on a 1D
Gross-Pitaevskii equation (GPE) as shown in Fig. 1. Note
that the pronounced interference fringes in the simulation
result from the interaction dominated axial expansion
within our 1D model. The additional axial confinement
due to the DP also leads to an increase of the axial size after
expansion shown in Fig. 2. The two solid lines (red and
blue online) show a theoretical prediction based on the
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FIG. 2 (color online). Size of the central peak after 20 ms of
ballistic expansion versus the number of atoms. The clouds were
released from the following potentials MT (
) (red online), MT
plus DP (�) (black online), MT plus OL (�) (blue online), MT
plus DP plus OL (�) (green online). The lines correspond to a
theoretical prediction (see text). The lattice depth was 6:5Er and
the DP had a depth of 0:1Er.
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Thomas-Fermi (TF) approximation. For the dashed lines
(black and green online) the same functional dependence
was fitted to the experimental data. This revealed an in-
crease in axial size by 25% and 28%, respectively. We have
used a 3D simulation to confirm that this increase is con-
sistent with the modification of the chemical potential,
introduced by the DP. Note that the change in size depends
strongly on the exact realization of the disorder. Despite
these effects of the DP, the computed ground states reveal
the absence of exponentially localized states (see analysis
below) and we conclude that the observed localization in
the absorption images is not caused by quantum interfer-
ence effects; i.e., it does not represent AL.

In order to understand the experimental results, we con-
sider an effective 1D model. The BEC spreads over more
than a hundred wells of the OL, each of the wells contain-
ing several hundreds of atoms. In this situation and for
depths of the OL and DP studied here the GPE is appro-
priate [20]. In oscillator units corresponding to the trap
frequency the GPE reads

i@t� �
�
�
@2
x

2
�
x2

2
� V0cos2�kx� � Vdis�x� � gj�j2

�
�;

(1)

where V0 is the depth of the OL while the DP is represented
by Vdis�x�. The coupling constant g is chosen such that the
TF radius equals the axial radius of the 3D atomic cloud in
the experiment (for the case of N � 7� 104 presented in
Fig. 1 we obtain g � 1500). In all further cases we have
chosen V0 � 6:5Er.

The DP in the experiments changes on a scale much
larger than the lattice spacing and the condensate healing
length, l � 1=

������������
8�na
p

, where n is the condensate density
and a the atomic scattering length. This suggests the
applicability of the so-called effective mass analysis [21].
We determine the ground state solution of the stationary
GPE in the form �0�x� �

�������
N
p

f�x�u0�x�, where u0�x� is
the Bloch function corresponding to the ground state of the
OL potential, f�x� is an envelope function, and N is a
constant chosen such that �0 is normalized to unity. This
leads to an effective GPE where the OL potential is elim-
inated but the mass of a ‘‘particle’’ and the interaction
strength become modified. For the experimental parame-
ters the effective mass is m� � 2:56 and the renormalized
interaction strength for N � 7� 104 is g� � 2498.

Because of the large value of g� we may use the TF
approximation and obtain the envelope function in the
form jf�x�j2 � ��� � x2=2� Vdis�x�	=g�, where �� is de-
termined from the condition

R
jf�x�j2dx � 1. The squared

overlap of the obtained �0 with the exact ground state of
the GPE is 0.999 which implies that the effect of the lattice
potential is reduced to a modification of the coupling
constant for the TF profile of the combined MT plus DP.
Thus, similarly to the experiments performed in the ab-
sence of an OL [18] we observe a fragmentation of the
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BEC induced by the DP but this fragmentation does not
correspond to Anderson-like localization.

To enter the localized regime, it is therefore necessary to
introduce a disorder that changes on a length scale com-
parable to the lattice spacing. Because of the limited
resolution of the DP imaging optics this poses considerable
experimental difficulties. Alternatively one may use a
pseudorandom potential obtained with the help of two, or
more, additional optical lattices with incommensurable
frequencies [22]. However, even the realization of such a
fine scale disorder is not necessarily sufficient for the
observation of nontrivial localization. Indeed, for a solu-
tion �0 of the stationary GPE the nonlinear term gj�0�x�j2

may be treated as an additional potential. When the atoms
accumulate in the wells of the random potential, the non-
linear term in the GPE effectively smoothes the potential
modulations [13]. For typical experimental parameters the
term gj�0�x�j2 dominates over Vdis�x� and consequently
the randomness necessary for localization is lost.

This picture is confirmed by analyzing the dependence
of the superfluid fraction on the coupling constant g shown
in Fig. 3. To calculate the superfluid fraction we have
numerically solved the 1D GPE in a box with periodic
boundary conditions in the presence of an OL and a
pseudorandom potential created by two additional optical
lattices at 960 and 1060 nm with depths of 0:2Er. The size
of the box was chosen to match the size of the atomic cloud
in the harmonic potential. The superfluid fraction is defined
as fs � 2�E0�v� � E0�0�	=Nv2 where E0�v� is the ground
state energy when a velocity field v is imposed on the
system (i.e., we compute the ground state solution in the
form �0�x� exp�ivx� where �0�x� fulfills periodic bound-
ary conditions) [23]. The superfluid fraction remains large
for typical experimental parameters, indicating the absence
of Anderson-like localization.

To overcome the screening of the disorder potential the
interaction within the atomic sample has to be reduced.
FIG. 3. Superfluid fraction as a function of the coupling con-
stant g obtained from a 1D GPE simulation for a pseudorandom
potential. Full (open) symbols correspond to a trap frequency of
2�� 14 Hz (2�� 4 Hz).
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This can be achieved by reducing the number of atoms,
lowering the trap frequencies or tuning the scattering
length via Feshbach resonances. We have performed cal-
culations for a trap frequency of 2�� 4 Hz and a pseu-
dorandom potential equivalent to the one used for Fig. 3.
For g � 0 one obtains Anderson-like localization of the
ground state wave function which is characterized by an
exponential localization j�0�x�j

2 / exp��jx� x0j=l�,
with the localization length l � 0:027. For such a non-
interacting system, there might exist several localized
single particle states with an energy close to the ground
state. For finite observation times, condensation could
occur into several of these low energy states, and several
‘‘small’’ condensates with different condensate wave func-
tions could coexist. Figure 4 suggests that the condensate
wave function becomes a combination of these localized
states due to nonlinear interactions.

Increasing g causes the ground state to contain a larger
number of localization centers. However, the localization
length in these cases hardly deviates from the noninteract-
ing case. When g is of the order of 500 one can no longer
distinguish individual localized states and the clear signa-
ture of nontrivial localization vanishes. This is consistent
with the appearance of a significant superfluid fraction in
Fig. 3. The results shown in Fig. 4(c) for g � 256 corre-
spond to axial and radial frequencies of 2�� 4 Hz and
2�� 40 Hz, respectively, and N � 104. In this case the
simulation shows characteristic features of Anderson-like
localization while these parameters are within experimen-
tal reach. The scenario of a crossover from the Anderson to
the screening regime, presented here, is one of the most
important results of our analysis.

Our theoretical investigation also shows that the detec-
tion of the onset of Anderson-like localization using a
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FIG. 4. Ground states of the GPE (note the varying logarithmic
scales) for a condensate in the combined potential of the MT,
OL, and pseudorandom potential. The depth of the OL is 6:5Er
while the depths of the additional lattices forming the pseudor-
andom potential are 0:2Er. The coupling constants g for the
panels are 0.5 (a), 8 (b), 256 (c). Oscillator units corresponding
to a trap frequency of 2�� 4 Hz are used.
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FIG. 5. Atomic density after 20 ms of ballistic expansion for a
condensate prepared initially in the states shown in Fig. 4 (left
column) and without DP (right column). Oscillator units corre-
sponding to a trap frequency of 2�� 4 Hz are used.
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measurement of the density distribution after ballistic ex-
pansion might be difficult. We have calculated the atomic
density profiles after 20 ms of ballistic expansion corre-
sponding to the parameters of Fig. 4. Despite a striking
difference in the ground state wave function, the width of
the envelope of the zero-momentum peak, which is related
to the localization length l, does not vary significantly as
shown in Fig. 5. In addition Fig. 5(c) shows that the
expansion is dominated by the interaction for experimen-
tally accessible values of g within our 1D model. Future
experiments on the detection of localization may rather
rely on a measurement of the superfluid fraction (see [24])
in an accelerated optical lattice.

In conclusion, we have presented a detailed analysis of
nontrivial localization for slowly varying potentials and in
pseudorandom potentials in the presence of interactions.
We have shown the absence of localization in the experi-
mental case and explained this effect using an effective
mass approach. For a truly random potential a suppression
of Anderson-like localization due to the screening by non-
linear interactions was found. An analysis for small inter-
actions and a pseudorandom potential reveals the char-
acteristic features of Anderson-like localization. The tran-
sition from the localized to the screened delocalized re-
gime may be detected via an analysis of the superfluid
fraction. This work paves the way towards the observation
of Anderson-like localization in an experimentally acces-
sible regime.
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[1] B. Damski et al., Phys. Rev. Lett. 91, 080403 (2003).
[2] R. Roth and K. Burnett, J. Opt. B 5, S50 (2003).
[3] A. Sanpera et al., Phys. Rev. Lett. 93, 040401 (2004).
[4] A. Auerbach, Interacting Electrons and Quantum

Magnetism (Springer, New York, 1994).
[5] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S.

Fisher, Phys. Rev. B 40, 546 (1989).
[6] R. T. Scalettar, G. G. Batrouni, and G. T. Zimanyi, Phys.

Rev. Lett. 66, 3144 (1991).
[7] R. Freedman and J. A. Hertz, Phys. Rev. B 15, 2384

(1977); Y. Imry, Europhys. Lett. 30, 405 (1995).
[8] S. Sachdev, Quantum Phase Transitions (Cambridge

University Press, Cambridge, 1999).
[9] Y. Shapir, A. Aharony, and A. B. Harris, Phys. Rev. Lett.

49, 486 (1982); T. Odagaki and K. C. Chang, Phys. Rev. B
30, 1612 (1984).

[10] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[11] P. A. Lee and R. V. Ramakrishan, Rev. Mod. Phys. 57, 287

(1985), and references therein.
[12] E. Gambeti-Césare, D. Weinmann, R. A. Jalabert, and

Ph. Brune, Europhys. Lett. 60, 120 (2002); G. Benenti,
X. Waintal, and J.-L. Pichard, Phys. Rev. Lett. 83, 1826
(1999).

[13] K. G. Singh and D. S. Rokhsar, Phys. Rev. B 49, 9013
(1994); K. O. Rasmussen, D. Cai, A. R. Bishop, and
N. Grønbech-Jensen, Europhys. Lett. 47, 421 (1999);
D. K. K. Lee and J. M. F. Gunn, J. Phys. C 2, 7753 (1990).

[14] P. Horak, J.-Y. Courtois, and G. Grynberg, Phys. Rev. A
58, 3953 (1998).

[15] R. B. Diener et al., Phys. Rev. A 64, 033416 (2001).
[16] U. Gavish and Y. Castin, Phys. Rev. Lett. 95, 020401

(2005).
[17] R. Folman et al., Adv. At. Mol. Opt. Phys. 48, 263 (2002);

C. Henkel, P. Kruger, R. Folman, and J. Schmiedmayer,
Appl. Phys. B 76, 173 (2003); D.-W. Wang, M. D. Lukin,
and E. Demler, Phys. Rev. Lett. 92, 076802 (2004).

[18] J. E. Lye et al., Phys. Rev. Lett. 95, 070401 (2005);
D. Clément et al., Phys. Rev. Lett. 95, 170409 (2005);
C. Fort et al., Phys. Rev. Lett. 95, 170410 (2005).

[19] L. Cacciapuoti et al., Phys. Rev. A 68, 053612 (2003).
[20] We have checked that the depletion of the condensate is

negligible and the GPE is therefore well justified.
[21] M. J. Steel and W. Zhang, cond-mat/9810284; H. Pu et al.,

Phys. Rev. A 67, 043605 (2003).
[22] Because of the finite system size the effects of a truly

random and a quasiperiodic disorder are similar. For a
more rigorous discussion for infinite systems see, e.g.,
J. B. Sokoloff, Phys. Rep. 126, 189 (1985).

[23] E. H. Lieb, R. Seiringer, and J. Yngvason, Phys. Rev. B 66,
134529 (2002).

[24] R. Roth and K. Burnett, Phys. Rev. A 67, 031602(R)
(2003).


