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Recent studies of in vitro evolution of DNA via protein binding indicate that the evolution behavior is
qualitatively different in different parameter regimes. I here present a general theory that is valid for a
wide range of parameters, and which reproduces and extends previous results. Specifically, the mean-field
theory of a general translation-invariant model can be reduced to the basic diffusion equation with a
dynamic boundary condition. The simple analytical form yields both quantitatively accurate predictions

and valuable insight into the principles involved.
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In modern biotechnology, evolutionary techniques have
found many new applications; in particular, in vitro evolu-
tion has been widely used to evolve DNA [1], RNA [2], and
proteins [3]. In order to improve the efficiency of such
evolution, a quantitative understanding of the process
would be helpful. Key questions include how the rate of
evolution and the equilibrium genotype distribution de-
pend on the main parameters of the process, such as the
mutation rate, population size, and selection strength.
Recently, evolution through competitive selection, or just
“competitive evolution,” has been introduced as a model
of in vitro molecular evolution [4—6]. Unlike traditional
“fixed fitness™ evolution [e.g., [7-11] ], competitive evo-
lution has a well-behaved mean-field theory which allows
accurate predictions of the evolution dynamics [4,5].
However, these analyses are valid only for limited parame-
ter regions—either high mutation rate and weak selection
[4], or low mutation rate and strong selection [5]. In this
Letter, I introduce a translationally invariant model of
competitive evolution, which through appropriate trans-
formations is reduced to the basic diffusion equation with
a dynamic boundary condition, and ultimately to a univer-
sal set of equations. This formulation is valid for a broad
parameter range, and its simplicity makes it a powerful tool
both for quantitative predictions and for qualitative under-
standing of the evolution process. This Letter includes
some key results; additional results and details are given
elsewhere [12].

The dynamics of an evolution process depend crucially
on the fitness (or phenotype) landscape. Analytical results
typically rely on a simple landscape, which leads many
authors to consider specific simple models [4,7,8,13]. 1
instead use the general assumption that the rate of muta-
tions that change the phenotype (binding energy) by some
amount € is the same for all molecules; i.e., the model is
translationally invariant in phenotype space—this corre-
sponds to the limit of infinitely long genomes/DNA mole-
cules [12]. While this is a strong assumption, the resulting
formulation gives accurate results also for finite systems
[see below; [12]].
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The model.—The present model is inspired by the evo-
lution experiment performed by Dubertret ef al. [14]. An
initial population of N DNA molecules is subjected to
consecutive cycles of evolution, each of which consists
of amplification and mutation followed by selection
through protein binding. First, the population is amplified
by a factor K. Each base of each DNA molecule is then
mutated with some probability which may depend on the
position and type of the base only; i.e., mutations are
independent. Finally, the strongest protein binders are
selected: each molecule is kept (bound) with probability
P[E(S)] = m, where E(S) is the binding energy of
DNA sequence S, B = k,%T and the chemical potential of
unbound protein, u, is tuned such that the expected num-
ber of selected molecules is N: (P[E(S)]) = 1/K. This
Letter only covers the zero temperature limit 7 = 0, for
which the selection function becomes the step function
P(E) = O(u — E); this is a good approximation in many
cases [4,15,16]. Typically, the average binding energy
improves through the evolution process; i.e., the evolution
rate %(E(S)} is negative.

For sufficiently large populations, a mean-field approach
is valid [4,5]; i.e., we can use deterministic equations for
the population density n,(E), where (£ n,(E')dE'is the
fraction of the population that has binding energy = E at
time ¢. While the actual evolution proceeds in discrete time
steps, the following continuum differential equation is a
good approximation [12]:

om(E)= [ plOln(E ~ & ~ n(E)lde + kn(E) (1)

with the boundary condition #n,[u(f)] = 0. The integral
term in Eq. (1) describes the mutation process, where
p(e) is the rate of mutations that change the binding energy
by €, while the second term gives exponential growth and
corresponds to the amplification process, with k = In(K).
The boundary condition enforces perfect selection by re-
moving all molecules with binding energy above the
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chemical potential w(f), which is determined by the nor-
malization condition for the population, [ #0 n(E)dE=1.

A simple formulation.—Assume there exists a mutation
that can improve the binding energy, i.e., p(e) >0 for
some € < 0. It is then easily shown that, for any k£ > 0,
there is a solution

nd(E) o (E — cot)eoE=co, (2)

with aq and c¢( given by the conditions

—coag = [w (e=@¢ — 1)p(e)de + k 3)

co = foo ee”“¢p(e)de. %)

For a general solution with the same exponential factor,
n,(E) = ii,(E)e®E=c) Eq. (1) simplifies to

0i(E) = [ e p@nE - O~ A(Ede )

~ —codpii,(E) + yd3i,(E), (6)

where y = [ %2 e~ “¢p(e)de. Equation (5) describes the
mean field of a random walk with an exponentially re-
scaled mutation/transition rate, p(e) = e~ *¢p(e), and ¢,
and 7y are the corresponding drift and diffusion coeffi-
cients, respectively. If € is the characteristic energy scale
for the mutations, then the condition agey << 1 (agey > 1)
specifies the regime of high (low) mutation rate/weak
(strong) amplification for which the results in [4] ([5])
apply (see below).
Changing coordinates to £ = E — ¢t now yields

ala(n] =0, (N

where @(z) = u(f) — cot. The only nontrivial part left is
the normalization condition

azﬁt(E) = ’yaéﬁ,(E),

—00

f M o (B)ewEdE = 1. ®)

The remaining parameters in Eqgs. (7) and (8) are « and
v, and appropriate rescaling of energy and time yields a
universal set of equations, which in turn gives a universal
shape for the population distribution (see below).
Additionally, the simplicity of the new formulation—the
basic diffusion equation with a dynamic boundary condi-
tion—allows us to apply all our knowledge and experience
about the diffusion equation to this evolution process. As
shown below and in [12] we can, through simple argu-
ments, use this formulation to find accurate corrections to
the various approximations/assumptions we have made.
The analytical predictions are confirmed with simulations,
using appropriate simple models [12] with a wide range of
parameters.

The propagating pulse.—As 7i, obeys a simple diffusion
equation, it will be very smooth, except possibly at very

early times. The population density n,(E) = 7i,(E)e®E
contains a factor that varies exponentially with E, thus a
linear expansion of 7, around the boundary gives a good
estimate of the population size:

Neiaoﬂ(t) L~
ALEE ' RO
0

Population size (77,) =

The normalization condition (8) t~hen relates the position of
the boundary to the slope of 7i,(E) at the boundary:

i (B gy = —age” oAU, (10)

If 71, is reasonably smooth on the characteristic energy
scale 1/ay, then the linear expansion around the boundary
will in fact give a good description of the full population at
time ¢. Applying Eq. (10), we find

n(E) = agfolaglE — u(1))), (1)
where
=1 124 (12)

is the universal pulse shape (Fig. 1). The dynamics of the
system can now be described as the motion w(f) of a pulse
of almost constant shape. For t — o0 (and mean field), the
pulse propagates at the constant speed c.

Note that Eq. (2) describes a population that extends to
arbitrarily low energies. If we impose a second boundary
condition n,[u(f) — A]=0 and require n,(E) >0 for
n(t) — A < E < u(r), then there is a bounded solution
n,(E) = sin{b[ u(r) — EJ}e®»O~E] that moves at constant
speed ¢, where b = b(A) = 77/A and

cp = co + yb*/ay,. (13)

In the limit b — 0 we recover the unbounded solution.
Similarly, a population that at # = 0 is located in a small
energy range will initially improve slower than the maxi-
mal rate c,—the lowest order correction is o ¢~ ! [12].

Evolution rate.—While we cannot in general solve
Egs. (3) and (4) for a and c( analytically, they are man-
ageable for certain models. For a simple discrete infinite-
length model [12], the mutation dynamics can be fully
described by the diffusion coefficient D and the drift speed
v [4]:
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FIG. 1. (a) The universal shape f((x) of the propagating pulse.
(b) The rescaled formulation fy(x) = fo(x)e™ for which the
mean-field dynamics are purely diffusive.

168701-2



PRL 95, 168701 (2005)

PHYSICAL REVIEW LETTERS

week ending
14 OCTOBER 2005

T L w T T . T 1

(a) (b) (©) (d)

t=0 ’yt«A2 ’yt~A2 ’\{t»A2

P | M & N e
-A 0 -A 0 -A 0 -A 0

FIG. 2. An initial perturbation given by a delta function (a)
will spread as a Gaussian (b) until it encounters the boundary. At
some time ~A? the slope at the boundary will be maximal
~1/A? (c), after which it decays as ~173/2 for 1 — o0 (d).

v

ple) = <D + %)5(6 S+ <D - E)5(6 L1, (14)

where 6(+) is Dirac’s delta function. D, v, and k can be
written as simple functions of ¢y, @, and y [12], and for
sufficiently small a, = /k/D we find the evolution rate ¢,
as a power series in k/D and v/D:

k k3/2 2k3/2
co=v—2VkD + — — v

L+ 4. (5
6D 12D 36D (15)

The first two terms are the solution in [4] (k = g) For
low mutation rate/strong selection, however, let us write
ple) = p.6(e — 1)+ p_&6(e + 1). For ay > 1 the expo-

nential rescaling p(e) = e~ *€p(e) makes p, irrelevant:
—k —k
ag—1 In(—¢o/p-) =1’

which is a more accurate, general version of Eq. (6) in [5].
These results confirm qualitative differences between dif-
ferent parameter regimes: for ayey << 1 the evolution rate
depends strongly on the mutation rate, while for ayeq > 1
the dependence is only logarithmic.

Finite population size.—For in vitro evolution, an im-
portant question is how large the evolving population must
be to achieve good results. Peng et al. [4] estimate the
effect of the population size on the evolution rate through a
cutoff procedure [17] that ignores amplification wherever
n(E) <. While the result matches simulations fairly
well, this might not be the correct cutoff [17]. A better
approach is to explicitly apply the key criterion: when will
mean-field theory fail? Consider the addition of a single
DNA molecule with binding energy A below the selection
threshold . In mean-field theory, the transformed initial
perturbation 87ig(E) = & e®0 A A S(E — [y — A]) will
evolve according to Eq. (7) with a fixed boundary a(r) =
fLo. Simple scaling yields a maximal slope at the boundary
~ L eaa=R0) /A2 after a time 7™ ~ A2/y (Fig. 2). From
Eq. (9), the population size perturbation is then SNY** ~
e“? /(apA)? (for apA > 1). For A large enough,
ONY* > N; i.e., the descendants of one molecule will
eventually replace the whole population, and the selection
threshold must “jump” to keep the population size con-
stant. This clearly violates mean field, and 6N = N
yields a lower boundary wu,(f) = u(f) — Ay beyond which
mean field fails. Our estimate of the evolution rate is then

(16)
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FIG. 3 (color online). Deviation from mean-field propagation
speed as a function of effective population size N* [see text,
[12]]; theory results and scaling collapse of simulations (small
circles).

the propagation speed ¢,z ) of a pulse of length Ay =
Ay = 3% (cpa,) — o), which corrects for the resulting
motion of the boundary f(z): [18]

701077'2

N T QNI (V)] - 7/6F

a7)

This estimate is very accurate (Fig. 3, “Theory”)—it
ignores the contribution from mean-field-violating events,
but is far better than the estimate in [4] (“1/N cutoff”).
Figure 4 shows the difference between the actual value of
u(2) and our estimate ug + cyt as a function of time for
two simulations with different populations sizes. These
plots support our discussion above—the difference is al-
most constant for long periods but occasionally makes a
large jump; i.e., there is a mean-field-violating event.

Finite size.—In a real, finite system, the mutation rate
distribution p(€) will not be the same for all molecules.
However, as long as p(e) depends primarily on the binding
energy E of the molecule and varies reasonably slowly
with E on the characteristic energy scale 1/a, we expect
the results found above to be good local approximations to
the actual dynamics. Indeed, in [4], the authors argued that
a population initially far from equilibrium will form a
pulse of almost constant shape that exponentially ap-
proaches its equilibrium position, in excellent qualitative
agreement with simulations.

Using the tools developed here, we can find good quan-
titative predictions also for finite systems [more in [12]].
For the discrete, finite model described in [4,19], v = v(r)
and D = D(r) in Eq. (14) depend on the mismatch number
r = E/€y. For t — oo, the propagating pulse and its bound-
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FIG. 4. Motion of boundary wu(f) relative to estimate [Eq. (17)]
for simulations with different population sizes.
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FIG. 5. Equilibrium position for the boundary as a function of
amplification K; estimates and simulation results, as discussed in
the text. Number of bases L = 170; mutation rate/base v = 0.01.

ary rq will reach an equilibrium position [4]. A simple es-
timate of rgQ is then the value of r for which the propaga-
tion speed co[v(r), D(r)] is O [from Egs. (3) and (4)]:

k = 2D(r) — +/4D(r)* — v(r)? (18)

—this equals the “‘second region formula” in [19]. As the

entire population has mismatch number below r,, the

solution to Eq. (18) is actually a lower bound for rEQ.
The equilibrium condition ¢, = 0 for a bounded solu-

tion yields

k = 2D(r) — /4D(r)*> — v(r)* cos(b). (19)

By solving the above equation for b, we find a population
that lies between r and r + 7/b(r); i.e., the entire popula-
tion has higher mismatch number than the position at
which cp[v(r), D(r)] = 0. Its upper bound r + 7/b(r) is
thus an upper bound for rgQ [20], and minimizing over r
yields the best upper bound. The average of the lower and
upper bound is our final estimate:

1 .
o = 5 om0 + min [r+ 7/be, (). (20)
=

As shown in Fig. 5, this estimate is very accurate for most
values of ¢! = K = ¢k; there are significant deviations
only for very low amplifications K [12]. Figure 5 also
includes the estimate found in [4] for comparison.

In this Letter, we have seen how the assumption of a
translationally invariant mutation rate leads to a powerful
formulation of competitive evolution that can give very
accurate predictions in many different situations. Most of
these results will be locally accurate for any system for
which the mutation rates p(e€) vary reasonably slowly with
E on the characteristic length scale 1/«. The effective
dynamics of the evolution process are to a good approxi-
mation captured by the rescaled mutation rate p(e) =
e~ € p(e): far from equilibrium, or for small populations,
this is the rate at which mutations are fixed in the popula-
tion, while for a sufficiently large population close to
equilibrium, this gives the relative occurrences of different
bases.

One significant result is the accurate prediction of the
limits of mean-field theory for a finite population and the

way in which it fails—when a molecule by chance gets
sufficiently far ahead of the general population, the popu-
lation is quickly replaced by the descendants of that single
molecule, evidenced by a jump in the selection threshold.
This limits the genetic variation that can build up during
competitive evolution: whenever such a jump occurs, es-
sentially all prior genetic variation is wiped out. For in-
stance, for an organism that reproduces mostly by asexual
growth but with periodic sexual reproduction stages, this
sets a lower limit for the frequency of sexual reproduction
necessary to maintain genetic diversity.

In summary, I have presented a simple model that accu-
rately captures the key qualitative and quantitative features
of asexual competitive evolution on a smooth landscape.
This allows prediction of the performance of competitive
evolution for a wide range of parameters for any given,
reasonably smooth energy landscape. Additionally, this
forms a baseline against which the performance of more
complex evolutionary procedures, e.g., using recombina-
tion [6], can be compared.

The author would like to thank Rahul Kulkarni for
helpful comments.
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