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We derive a quantum nonlinear sigma model (QNLSM) for quantum Heisenberg antiferromagnets
(QHA) with arbitrary S (spin) values. A upper limit of the low temperature is naturally carried out for the
reliability of the QNLSM. The S dependence of the effective coupling constant and the spin-wave velocity
in the QNLSM are also obtained explicitly. The resulting spin-wave velocity for 2D spin-1/2 QHA highly
concurs with the experimental data of high 7. compound La,CuQ,. The predicted correlation lengths for
2D QHA and spin-gap magnitudes for 1D QHA also agrees with the accurate numerical results.
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Quantum magnetism in low-dimensional strongly corre-
lated systems is a central issue in modern condensed matter
physics. For example, the parent compounds of the cuprate
high T, superconductors are essentially antiferromagnetic
Mott insulators described by a two-dimensional spin—%
quantum Heisenberg antiferromagnets (QHA) [1]. Such a
low-dimensional QHA system has not been fully solved
quantum mechanically. Only in the large S Ilimit has
Haldane shown that the lattice QHA can be described by
the quantum nonlinear sigma model (QNLSM) [2]. Since
then, the QNLSM has become a good candidate for the
phenomenological description of the low-dimensional
QHA at low temperatures for various § values [3-5].

However, two crucial questions remain for the QNLSM
approach: (1) Why are the predictions of QNLSM obtained
in the large-S limit coincidentally consistent with experi-
mental data of the low energy QHA with small S values?
and (2) What is the upper limit of the low temperature for
the reliability of QNLSM? These two questions, along with
other difficulties for the QNLSM, have been addressed in
some recent literatures [6]. But they have not yet been
satisfactorily solved in a simple, consistent approach. In
this Letter, with the topologically invariant spin variable
path integral approach, we resolve these problems by
deriving a QNLSM from the lattice QHA for arbitrary S
values.

Let us first briefly recall the large-S approach of the
QNLSM. The partition function of a spin system is usually
expressed in terms of the spin variable path integral as
follows (in the unit 2 = kp = 1):

Z =Tre PH = f DIQ]e [o drlisa-o—@imie) )

where the first term in the exponent iS fg drA - Q =

jg dr(Q|-L]Q) = iSw(Q) is a topological Berry phase
[7], and A is a U(1) monopole potential; [2) is a spin
coherent state while €2 is a unit vector along which the spin
operator with spin quantum number S is maximally aligned

in |Q). For the lattice Heisenberg model (HM), H =
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Y i»Si - 8; (J>0), Eq. (1) becomes
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By minimizing H(Q) = J$*3;,Q; - Q;, one can find the
classical ground state (Néel state) which spontaneously
breaks the SO(3) symmetry. Then by expanding the action
around the ground state, the spin-wave theory of HM,
which describes the long wavelength spin modes [8], can
be easily derived.

But, according to the Mermin-Wagner’s theorem [9], no
symmetry can be spontaneously broken in one- or two-
dimensional HM for a finite 7 ( > 0). To derive an effective
long wavelength action that retains the full spin rotational
symmetry, Haldane considered the large-S limit. In the
large-S limit, the path integrals of Eq. (2) are dominated
by the semiclassical equation: iS€) X Q= %&{” By sep-
arating the semiclassical solution £2; into a slowly varying
Néel order unit vector (—1)'n(x;) plus a slowly varying
magnetization density field perpendicular to n(x;)
(Haldane’s mapping), and then taking the continuous limit
and integrating out the magnetic density field, Haldane
shows that Eq. (2) is reduced to a QNLSM,

Zuy = [ Dinjerzrsotme (4 [ nnitn, g

defined in the (d + 1)-dimensional space (x!, - - -, x¢*1) =
(x!, -+, x% ¢,7) where g, = 2+/d/S is a dimensionless
coupling constant, ¢, = 2+/dJSa the spin-wave velocity
and A = a~! the inverse of the lattice spacing. The imagi-
nary time (temperature) variable 7 ranges from O to 8 =
1/T. The exponent ®[n] in Eq. (3) is a topological factor
associated with the Berry phase.

However, as we will elaborate, the derivation of the
QNLSM based on the large-S expansion should be im-
proved from the very beginning. As a long-standing prob-
lem in the construction of generalized phase space path
integrals [10], the Eq. (1) is not well defined. The main
problem arises from the assumption, used in deriving
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Eq. (1), that |Q(7 + 87)) — |Q(7)) is of order O(87).
Although this assumption has been widely used in the
application of generalized phase space path integrals, it
has never been justified [10]. In fact, in effective field
theories, there always exist simultaneous rapidly and
slowly varying paths in the path integral formalism that
are associated with short and long range quantum fluctua-
tions, respectively. The effective action for slowly varying
motions can be properly obtained by integrating over short
range quantum fluctuations [11]. However, in Eq. (1), only
slowly varying motions are retained; the short range quan-
tum fluctuations have simply been ignored.

To overcome the shortcomings involved in the deriva-
tion of Eq. (1), we begin with the discrete form of the
partition function obtained exactly from the coherent state
representation [12]:

N N
Z= Al]im l_[ du(QF) exp{z In(QF| Q1)
T k=1 =1

(QFH|QFT)
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(where |QVN) = |Q° because of the periodicity of the
trace), € = B/N is infinitesimal as N — oo. The slowly
varying motion means that [;) — |, ) varies smoothly
in the interval € such that it can be written as a time
derivative €|Q2). The rapidly varying motion of |Q;) —
|Q;_,) in the interval € is related to the short range
quantum fluctuations; we label it as 6€2. The assumption
of |QK) — |Q* 1) being of order O(e¢) only keeps the
slowly varying motions Q, while the short range fluctua-
tions 642 is ignored. Thus, the continuous-time limit of (4)
results in the conventional spin variable path integral of
Eq. (1).

To include the contribution of the short range fluctua-
tions, one should expand the nearby coherent state overlap
to the second order terms that either are exclusively slowly
varying motions or include at least one rapidly varying
motion. The topologically invariant terms
limy_o SV, In(Q;|Q;_;) can then be uniquely ex-
pressed by

Sfﬁdf{iA.Qﬂﬂ-(Qx59)—i59-5ﬂ}, (5)
0 TA

where the parameter 7, = 1/T, is an intrinsic shortest
time scale (an upper limit of low temperature) for dis-
tinguishing the slowly varying and rapidly varying
motions. We will later discuss this time scale in detail.
The second and third terms in Eq. (5) are usually ignored
in the conventional derivation of phase space path inte-
grals. For the Hamiltonian term in Eq. (4),

limy_, Zf(\’: ! e%, since it is already proportional
to € we only keep the off-diagonal expansion up to the

quadratic order of §Q:

92H[Q]
00,00,

f dr {H[Q] + aH[m 50+ mama,},

(6)

where «, o’ are indices of spin components. Substituting
Egs. (5) and (6) into Eq. (4), one gets

_ f DIQ]D[5Q]exp ﬁ) b dr{iSA -0 - H[Q]

+ [iSQ X Q — aH[Q]} <60 — [S S e
Q) TA
9?H[Q]
+ m}mama,}, 7)

which describes both the slowly varying motion € and the
short range fluctuations 6€2.

iSQ X Q —
0, Eq. (7) is simply a variation expansion of the
path integral (1) with respect to the semiclassical dynamics
Haldane used [2], except for the geometrical term T—S\ which

If one takes the semiclassical limit,
IH[Q] _
EXo)

cannot appear in Haldane’s mapping. However, we must
emphasize that Eq. (7) is derived by carefully treating the
off-diagonal elements of nearby coherent states in Eq. (4)
in terms of the short range fluctuation 62 and the slowly
varying motions Q. Since there is no semiclassical expan-
sion to begin with, it is not necessary to take the semiclas-
sical limit by letting the second term vanish. Instead, one
can integrate out the short range fluctuations €2 and
obtain a low energy effective action for the long wave-
length spin modes. Since no semiclassical approximation
is made in this procedure, the resulting long wavelength
effective action should be valid for arbitrary S values.

Next, we apply Eq. (7) to the HM. To specify the
antiferromagnetic ordering, let the slowly varying ; =
(—1)'n(x,); here the Neél order m(x;) is a unit vector
In(x;)| = 1. Then, by taking the space continuous limit
S, — ﬁ [ d?x where a is the lattice spacing:

H[Q] = JSzzﬂ,- - Q; — —dJS’N
)

JS2
o ] d xZ[akn Som@]  (8)

IHIQ] 50—, ©)
0
2H[Q] WIS [
90,00, 220~ [ d'x50(x) - Q).

(10)

substituting (8)—(10) into (7), and integrating out the short
range fluctuation 62, we obtain,
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This is a QNLSM of the low energy QHA for arbitrary S
values, where the coupling constant and spin-wave velocity
are given by

2 T, T,
= d oA c=2Safd+ A 2
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277S0O[n] =
same as in
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The topological phase factor
278y (—1)'A(x;) -ia(x;) remains the
Haldane’s derivation.

In the large-S limit for fixed T, g, — 2+/d/S, and ¢, —
2+/dJSa. This reproduces the large-S QNLSM. The differ-
ence between (3) and (11) primarily comes from the con-
tribution of the short range fluctuations, the 1/7, = T
term in (7) which cannot be included in Haldane’s mapping
[2]. However, this term plays an important role in the
derivation of a consistent semiclassical dynamics [13].
Indeed, Ty is an upper limit of the low temperature scale
for the reliability of the QNLSM. Usually one assumes that
there should be no intrinsic cutoff for the imaginary time
variable 7 because quantum fluctuations exist on all time
scales in path integrals [3]. But a low energy effective
theory constructed from the path integral is defined by
integrating over high energy quantum fluctuations above
certain energy scale [11]. Without such an intrinsic cutoff,
namely, letting 7, — 0 (T, — ), Eq. (11) reduces to

Zy = f Dn]e27S0In] exp{—% / [ddx|vxn|2”, (13)

where p, = JS?a*>? is the spin stiffness. Except for the
topological phase, this is the classical d-dimensional
NLSM rather than a quantum (d + 1)-dimensional
NLSM that Haldane obtained [2]. This is because in the
limit 74 — 0, the strong canonical fluctuation in Eq. (5)
smears the dynamical fluctuation of Eq. (10) so that only
the classical Hamiltonian Eq. (8) remains.

Now, let us discuss how to consistently determine this
time scale. The lattice spacing a indicates the existence of
an intrinsic momentum cutoff A in the d-dimensional
momentum space: A = 2/#[[(d/2 + 1)]"/a =L/a.
Using the energy-momentum relation of the spin wave,
E = c,k, one can find the intrinsic energy cutoff (the
inverse of the shortest time scale 7,) T = c,A/2 [8].
Combined with (12), we get

2 2
Tn 8L (4 |y 4 167 d) (14)
L

J =47T2 2

For d =2 and S = 1/2, we have L = 2.,/ and thus
Ty/J =0.97. This determines quantitatively a low tem-

perature upper limit for the reliability of QNLSM to the 2D
spin-1/2 QHA: 0 =< T/J <T,/J = 1.0. Meanwhile, the
spin-wave velocity ¢, can also be explicitly determined
from Eqgs. (12) and (14). For La,CuQ,, which is a typical
2D spin-1/2 QHA with ¢ = 3.79 A and J =~ 1500 K, we

obtain (keeping h) hc, = 2JSa\ld + 1& ~0.85 eV A.
This is in excellent agreement with the experimental data
he, = 0.85 = 0.03 eV A [14].

Our main results, i.e., Eqs. (12) and (14), can be further
tested against the known results for the 2D QHA, among
which the quantum Monte Carlo data are almost exact. Up
to the three-loop correction, the QNLSM predicts [4] the
asymptotic scaling behavior of the correlation length in the
renormalized classical regime as

&y = Aexp(1/0)[1 — 0.5t + O(+?)], (15)

where A = £ 75
8 2mp,

t= 2L. is the dimensionless temperature, and ¢, and g,
TP “

is a temperature-independent prefactor,

are the renormalized spin-wave velocity and spin stiffness
which can be consistently determined by large-S expan-
sion. The predicted formula &5; is extremely sensitive to
the spin stiffness and is consistent with the QMC data
[15,16] at very large correlation lengths (low temperatures)
for § = 1/2 when the best-fit value 5, = 0.1800 is used.
However, at moderate correlation lengths, highly accurate
QMC data [15] and series expansions [17] indicate a
significant discrepancy which rapidly increases with S.
The asymptotic scaling at the three-loop sets in at correla-
tion lengths larger than 10° for S = 1/2 [15] and cosmo-
logical lengths for larger S.

Quite strikingly, according to the basic assumption of
the large-S approach, the discrepancy between the
theory and numerics, if it exists, should be significant
only for small S. By contrast, in our derivation, the asymp-
totic scaling behavior Eq. (15) holds for arbitrary S at low
temperatures, provided the effects of the intrinsic scale T
are correctly taken into account. Note that the temperature
dependence in Eq. (15) comes from a simple assumption
that at nonzero temperature 7 the correlation length is
much larger than the finite extent c¢,/T along the
Euclidean time direction in the renormalized classical
regime [3,4]. In our case, the time extent is replaced by
¢,(1/T — 1/T,), making the assumption more reasonable.
Therefore, we only need to replace T by the rescaled
temperature 7' = TiT;“T in Eq. (15). The validity of this
simple rescaling requires that 7 < 27p,, or T < 0.5 J for
S = 1/2. Interestingly, the rescaling does not change the
two-loop asymptotic scaling behavior. On the other hand,
the shifts in ¢, and g, only modify the prefactor A but keep
ps unchanged. Figure 1 shows the deviations of various
results from two-loop asymptotic scaling exp(1/¢) as a
function of ¢. The three-loop results of Eq. (15) in terms

2,

oftand 7 = Lﬁ are plotted as the 3-loop old (dashed) line
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FIG. 1. Deviations of various results from two-loop asymptotic
scaling as a function of . The QMC result is obtained from
Ref. [15].

and the 3-loop new (solid) line, respectively. For our three-
loop result, the scaling regime begins at roughly ¢& =
10>-10°, when T =~ 0.3 J. As a comparison, a suggested
four-loop (dotted) line [15] is plotted by adding the cor-
rection O(#%) in Eq. (15) before rescaling. The coefficient
of this term is —0.75 by fitting the highly accurate QMC
data which is apparently too large to be obtained within
reasonable four-loop corrections [15].

Our results can also be tested against the known results
for the 1D QHA. Note that in 1D, the topological term
plays a crucial role, leading to the quantum critical and
disordered phases for half integer and integer spins, re-
spectively [2,18]. In the disordered phase, T, can be
determined by using the relation E?> = c¢Zk*> + A2. This
only leads to a correction (9((2%“])2) to Eq. (14). For § =
1/2, 1, 3/2, and 2, the accurate numerical results for the
values of ¢,/(aJ) obtained by the density matrix renormal-
ization group (DMRG) [19-21] are 1.57, 2.49, 3.87, and
4.65, respectively, which show a systematic deviation from
2S. While, by Eq. (12), they are 1.28, 2.55, 3.84, and 5.00,
respectively, providing much better predictions. The 1D
QNLSM also predicts a gap [18] in the disordered phase as
A, = Bc,exp(—2/g,), where B is a S-independent fit-
ting parameter of order of 1. The DMRG results are A| =
0.4117J for S =1 [22]; A, = 0.085 ] for § = 2 [21,23].
By using the best-fitting parameter, B = 2, we find that our
derivation gives A; = 0.438 J and A, = 0.076 J, respec-
tively, while the large-S approach gives A; = 0.172 J and
A, = 0.015 J, respectively. Therefore, the present 1D
QNLSM provides a better approximation for the spin-gap
magnitudes in the 1D integer QHA.

In conclusion, by using a topologically invariant spin
variable path integral approach, we resolve the two crucial
problems in the QNLSM description of QHA as mentioned
in the beginning of this Letter. The basic parameters in the
QNLSM are unambiguously defined for arbitrary spin
values. The primary tests discussed above show that the
quantum fluctuations in the QHA, which are usually under-
estimated in the large-S approach, are now more properly

described. It should be emphasized that the construction of
a low energy effective field theory from the extended phase
space path integrals developed in this Letter is a general
approach, in which the shortest time scale plays a crucial
role for self-consistency. This approach can be applied to
other generalized phase space path integrals [12] for the
study of low energy physics in various strongly correlated
systems.
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