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Interactions of Spin Waves with a Magnetic Vortex
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We have investigated azimuthal spin-wave modes in magnetic vortex structures using time-resolved
Kerr microscopy. Spatially resolved phase and amplitude spectra of ferromagnetic disks with diameters
from 5 �m down to 500 nm reveal that the lowest order azimuthal spin-wave mode splits into a doublet as
the disk size decreases. We demonstrate that the splitting is due to the coupling between spin waves and
the gyrotropic motion of the vortex core.

DOI: 10.1103/PhysRevLett.95.167201 PACS numbers: 75.75.+a, 75.30.Ds, 75.40.Gb
The magnetic ground state of a soft ferromagnetic par-
ticle is determined by a balance between magnetostatic and
exchange energies. In the case of disks with negligible
magnetocrystalline anisotropy, the stable configuration
for radii of several hundred nanometers and thicknesses
of the order of 20–50 nm is a vortex with a core diameter
on the order of the exchange length [1,2]. The magnetiza-
tion outside of the core circulates around the central axis,
reducing the total magnetostatic energy. This comes at the
cost of a large exchange energy near the vortex core, inside
of which the magnetization rotates out of the plane of the
disk. Because the vortex state represents the simplest type
of domain configuration that can be created in a uniformly
magnetized particle, its excitation spectra is of fundamen-
tal interest. Recent experimental work has identified two
classes of excitations in magnetic vortices. First, low-order
magnetostatic spin waves can be observed by either time-
resolved Kerr microscopy [3–6] or Brillouin scattering
[7,8]. A second type of excitation is associated with the
translational degree of freedom of the vortex core itself
[3,9,10]. This has a much lower characteristic frequency
than the other spin-wave modes, and it is for this reason
that the two types of excitations are often treated as dis-
tinct. For example, the radial spin-wave modes of a particle
can be calculated accurately even if the position of the
vortex core is regarded as fixed [4,5].

In this Letter we report on a study of the dynamics of the
lowest order azimuthal spin-wave modes in ferromagnetic
disks with diameters between 500 nm and 5 �m. In larger
diameter disks, these are degenerate as expected for a
system with cylindrical symmetry. We demonstrate that
this degeneracy is lifted in smaller disks (with diameters
less than 2 �m and thickness to diameter ratio >0:005)
due to the motion of the vortex core. The relative phases of
the two modes are determined by the polarity of the vortex
core, and the magnitude of the splitting is of the same order
as the vortex gyrotropic frequency. These results demon-
strate a significant coupling between vortex dynamics and
magnetostatic spin waves.

Two sets of permalloy disks were fabricated on Si sub-
strates using electron-beam lithography and electron-beam
evaporation of permalloy (Ni0:81Fe0:19). The first set of
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disks were used primarily for investigations of the vortex
gyrotropic mode and were 50 nm thick with diameters D
from 500 nm to 2 �m. The disks used for the detailed
investigation of azimuthal spin-wave modes covered the
range of diameters from 700 nm to 5 �m and were 20 nm
thick. Each disk exhibited a single-vortex ground state as
determined by magnetic force microscopy.

Measurements were conducted using time-resolved Kerr
microscopy (TRKM) [11,12]. Each substrate was thinned
to a thickness of approximately 25 �m and mounted over
the 30 �m wide center conductor of a coplanar waveguide,
as shown in Fig. 1(a). The waveguide was placed on the
scanning stage of an oil-immersion microscope. The
TRKM technique probes the response of the magnetization
to a fast magnetic field pulse hp, which is along ŷ in
Fig. 1(a). The magnitude of hp is 5–10 Oe, and the tem-
poral width of the pulse is 120–150 psec. The polar Kerr
rotation ��x; y; t� of an optical probe pulse is measured as a
function of the time delay t between hp and the subsequent
arrival of the probe pulse. A lock-in technique is used to
measure the change ���x; y; t�, due to hp, averaged over
many pulses. The z component mz�x; y; t� of the dynamic
magnetization is proportional to ���x; y; t�.

In the remanent state, the vortex core is located at the
center of the disk, as shown in the magnetic force micro-
graph of Fig. 1(b). When the pulse hp is applied, the core is
displaced and then slowly gyrates about the center of the
particle as the system relaxes towards equilibrium [3,9].
This mode, which has also been observed in a resonance
experiment [10], appears as the long-lived low-frequency
(< 1 GHz) oscillation in Fig. 1(c), which shows the polar
Kerr signal measured at a position 250 nm away from the
center of two disks with diameters of 1.5 and 1 �m. The
evolution of the vortex mode eigenfrequency as a function
of the disk diameter is shown in Fig. 1(d). As discussed in
Ref. [13], the vortex core oscillates in an effective potential
that is due to the magnetostatic energy of the displaced
vortex. The solid curve shown in Fig. 1(d) follows from a
model in which the vortex deforms rapidly (i.e., on a time
scale fast relative to the core motion) in order to cancel out
the edge charges [13]. The experimental results are also in
good agreement with a semianalytical solution of the
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FIG. 2. (a) Schematic of the vortex magnetization (left), the
torque exerted by the in-plane pulse (middle), and polar Kerr
image immediately after the pulse for a 1 �m diameter
disk (right). (b) The spectral power measured for four disk
diameters with thicknesses of 20 nm. The curves are offset
vertically for clarity.

FIG. 1. (a) Schematic of the experiment showing the sample
on a coplanar waveguide. The current pulse generates a magnetic
field pulse along ŷ. (b) A magnetic force microscopy image of a
D � 1 �m disk showing a magnetic vortex core at the center of
the disk. (c) The polar Kerr signal as a function of pump-probe
time delay measured for disks with diameters of 1.5 and 1 �m.
(d) The vortex mode eigenfrequency as a function of the disk
diameter. The analytical model (from Ref. [13]) and simulation
results are discussed in the text.
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Landau-Lifshitz equation and micromagnetic simulations
[14,15]. The open circles in Fig. 1(d) show the eigenfre-
quencies found in micromagnetic simulations of the full
Landau-Lifshitz-Gilbert equation with a saturation magne-
tization Ms � 770 emu=cm3, damping parameter � �
0:008 and a cell size of 5 nm [16].

An additional feature of the data in Fig. 1(c) is the higher
frequency response at short time scales. As illustrated in
Fig. 2(a), the torque M�Hp has opposite signs in the two
halves of a vortex. As a result, the spins in the upper half of
the disk are rotated out of the plane, while those in the
lower half of the disk are rotated into the plane. A spatially
resolved polar Kerr image of a 1 �m diameter disk just
after the pulse, demonstrating the expected contrast, is
shown in the right panel of Fig. 2(a). The signal at short
time scales in Fig. 1(c) is the subsequent precession and
decay of the nonequilibrium magnetization. The spectrum
of these higher frequency spin-wave modes can be ob-
tained by Fourier transformation of the time-domain
data. Spectra obtained for several different disk diameters
are shown in Fig. 2(b).

Given the cylindrical symmetry of the vortex state, the
spin-wave modes can be indexed by the number of nodes n
and m along the radial r̂ and azimuthal �̂ directions:
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�n;m� � mn;m�r; t�e
i�m��!n;mt�, where f�n;m� � !n;m=2�

is the eigenfrequency. This enumeration ignores the node
that always exists at the vortex core, inside of which the in-
plane components of the magnetization vanish. The (0,0)
mode is a purely radial mode and is excited most efficiently
by an out-of-plane magnetic field pulse as observed in
Ref. [4]. The �0;�1� modes are the two lowest order
azimuthal modes and are excited by an in-plane pulsed
field [4,6,17]. Because of the cylindrical symmetry of the
vortex ground state, the �0;�1� modes are expected to be
degenerate if the core is fixed at the center of the disk. As
expected, only a single peak is observed in the spectra of
larger disks, as shown for the case of a 5 �m diameter disk
in Fig. 2(b).

Although a single �0;�1�mode is observed in the 5 �m
diameter disk, the peaks in Fig. 2(b) begin to split as the
disk diameter decreases. This doublet has also been ob-
served in measurements on a 700 nm diameter disk by Zhu
et al. [6] The remainder of this Letter is dedicated to
understanding these doublets. Clearly the lifting of the
degeneracy requires the breaking of cylindrical symmetry,
and we argue that the reduced symmetry originates from
the gyrotropic motion of the vortex core, an argument
supported by more rigorous calculations [17,18] and mi-
cromagnetic simulations [6]. To address this we will label
the vortices by a polarity P � �1, where P corresponds to
the vortex core pointing out of (P � �1) or into (P � �1)
the plane of the disk, and a chirality C � �1 indicating
that the in-plane component of the magnetization rotates
counterclockwise (C � �1) or clockwise (C � �1).

As noted above, the low-frequency vortex mode is gyro-
tropic and therefore has a particular sense of rotation.
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Ignoring damping, the total force acting on the vortex is
[19]

F � G�
dR
dt
�
@W�R�
@R

; (1)

where R is the position of the core in the plane, G is the
gyrovector with a direction (into or out of the plane)
corresponding to the sign of the polarization P, and W is
the total energy of the vortex. Since W does not depend on
the chirality, the gyrotropic motion described by Eq. (1)
depends only the vortex polarity P. In our experiment, the
core polarity can be controlled by relaxing the disk from
saturation in the presence of a small (	80 Oe) out-of-plane
field. The chirality cannot be controlled but is easily mea-
sured by imaging the displacement of the vortex in a small
in-plane field. (The direction of displacement is perpen-
dicular to the applied field and depends on the chirality.) In
this way, we can select two vortices with identical chiral-
ities but opposite polarities. Spectra for these two vortex
states in a 1:5 �m disk are shown in Fig. 3(a). Each
spectrum shows three peaks at identical frequencies of
FIG. 3 (color online). (a) The spectral power integrated over
space for two different vortex-core polarities: top (blue online)
for the P � �1 vortex state and bottom (red online) for the P �
�1 state of a 1:5 �m diameter disk. The chiralities of the two
vortex states are the same. The two curves are offset for clarity.
(b) The spectral power and phase images of the �0;�1� modes at
3.2 GHz (top) and 3.8 GHz (bottom). The panels on the left show
results for the P � �1 vortex state (power and phase, respec-
tively) and the right panels the P � �1 state. The arrows show
the direction in which the phase changes from 0 to 2�. The
response at 3.4 GHz (middle) is a superposition of the �0;�1�
and �0;�1� modes.

16720
0.2, 3.2, and 3.8 GHz. The upper two modes are the
�0;�1� modes, for which a splitting can be resolved.

Figure 3(b) shows the spectral power and phase images
at three different frequencies for the two vortex polarities.
These images are constructed from the Fourier transform
of the time-domain data [3,4]. As expected for azimuthal
modes with one node, the phase wraps through 2� as the
disk is traversed around the circumference. The spectral
power images at the two peak frequencies (3.2 and
3.8 GHz), shown in the top and bottom panels of
Fig. 3(b), are essentially the same for the two polarities.
The phase images, however, invert when the polarity of the
vortex core is reversed. In other words, the direction in
which the phase winds from 0! 2� changes from coun-
terclockwise to clockwise. This corresponds to reversing
the sign of the azimuthal index m, and so the �0;�1� and
�0;�1�modes exchange identities when the polarity of the
vortex core is reversed.

It is also possible to examine the spectral power and
phase in the frequency regime corresponding to a super-
position of the two modes. This is shown in the middle
panel of Fig. 3(b). An equal superposition of the two
�0;�1� modes would be a standing wave, and indeed a
line of nodes can be seen in the spectral power image at
3.4 GHz. Since the wave vectors of the �0;�1� modes are
either parallel or antiparallel to the magnetization, they
have backward volume character [20], and both eigenfre-
quencies are therefore expected to lie below that of the
radially symmetric (0,0) mode [6,21], although the (0,0)
mode cannot be excited in the geometry of this experiment.

As shown by the analysis of Fig. 3, the symmetry of the
�0;�1� modes is determined by the polarity of the vortex
core. The polarity determines the sense of rotation for the
vortex gyrotropic motion, which breaks the azimuthal
symmetry. Figure 4(a) shows the eigenfrequency of
�0;�1� modes as a function of the dimensionless quantity
� � L=R, where the thickness L is 20 nm and the radius R
varies from 350 nm to 2:5 �m. The solid and dashed
curves show the frequencies of the two modes determined
from micromagnetic simulations. As the radius increases,
the eigenfrequencies of the �0;�1�modes and the splitting
�f between the modes both decrease. For � 
 0:01, �f
becomes smaller than the frequency resolution in our
experiment and the �0;�1� modes are essentially degener-
ate. Although both the absolute frequency and the size of
the splitting are larger than the experimental values, the
same trend is observed in the simulations.

We have also examined the relationship between the
magnitudes of the �0;�1� splitting �f and the gyrotropic
mode frequency fG. This is shown in Fig. 4(b) for both the
experiment (closed circles) and simulations (open circles).
Over the range of our measurements, the splitting is ap-
proximately twice fG, although it is not possible to observe
the gyrotropic mode in the largest disks. The simulations
considered here as well as those of Zhu et al. [6] show a
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FIG. 4. (a) The measured eigenfrequencies of the �0;�1�
modes are shown as a function of � � L=R. The symbols are
experimental data and the curves are the results of micromag-
netic simulations. (b) The splitting �f of the �0;�1� modes is
shown as a function of the vortex mode frequency.
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larger splitting relative to fG, although they also cannot be
extended to the largest diameters, at which both �f and fG
must approach zero. The relationship between the vortex-
core mode and the azimuthal spin-wave modes has also
been considered recently by Ivanov and Zaspel [18]. They
calculate a splitting �f which is approximately half fG,
implying a curve that falls significantly below the experi-
mental data in Fig. 4(b). Although experiment, simula-
tions, and the theory all indicate that �f and fG are of
the same order of magnitude, the discrepancies among the
various approaches are certainly significant. This reflects
the difficulty in treating exactly the coupling between the
two different types of excitations. Since the coupling is
magnetostatic in origin, the experimental results may be
susceptible to nonideal structure at the edges of the disk.
This may also be addressed by carefully examining the
role of the boundary conditions in the different theoretical
approaches.

The broken degeneracy of the azimuthal spin-wave
modes clearly demonstrates how low-frequency excita-
tions associated with domain structure, of which a vortex
is the simplest example, influence spin-wave dynamics. An
intriguing question is how the coupling will evolve at
larger wave vectors, corresponding to higher azimuthal
eigenmodes. Since the magnetostatic interactions that pro-
vide the restoring force on the vortex core are long range in
nature, we expect that the coupling will be smaller for
higher-order modes. At very large wave vectors, however,
16720
when the wavelength becomes comparable to the exchange
length, spin-wave modes may interact strongly with the
vortex core itself.
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