
PRL 95, 166802 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
14 OCTOBER 2005
Effect of Electron-Phonon Scattering on Shot Noise in Nanoscale Junctions
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We investigate the effect of electron-phonon inelastic scattering on shot noise in nanoscale junctions in
the regime of quasiballistic transport. We predict that when the local thermal energy of the junction is
larger than its lowest vibrational mode energy eVc, the inelastic contribution to shot noise (conductance)
increases (decreases) with bias as V (

����
V
p

). The corresponding Fano factor thus increases as
����
V
p

. We also
show that the inelastic contribution to the Fano factor saturates with increasing thermal current exchanged
between the junction and the bulk electrodes to a value which, for V � Vc, is independent of bias. These
predictions can be readily tested experimentally.

DOI: 10.1103/PhysRevLett.95.166802 PACS numbers: 73.63.Nm, 68.37.Ef, 73.40.Jn
It is an established fact that for systems with dimensions
much longer than the inelastic mean free path �ph (e.g., a
macroscopic sample) steady-state zero-temperature cur-
rent fluctuations (shot noise) are suppressed by electron-
phonon scattering [1,2]. Similarly, for metallic diffusive
wires with length much smaller than �ph (and smaller than
the electron-electron scattering length), the Fano factor
(i.e., the ratio between shot noise and its Poisson value,
2eI, where e is the electron charge and I is the current of
the system) equals 1=3 and is not affected by inelastic
processes [3]. Systems of nanoscale dimensions may not
fall in either one of the above cases. In this instance each
electron, on average, releases only a small fraction of its
energy to the underlying atomic structure during the time it
spends in the junction, making transport quasiballistic [4–
10]. However, the current density and, consequently, the
power per atom are much larger in the junction compared
to the bulk. This leads to heating and inelastic features in
the differential conduction which are indeed observed in
experiments with metallic quantum point contacts [11–14]
and molecular structures [7,9,15–17] as a direct conse-
quence of the interplay between electron and phonon sta-
tistics [18]. For these systems it is therefore not obvious
what the effect of inelastic scattering on shot noise is.

In this Letter we show analytically that shot noise in
quasiballistic nanoscale junctions is enhanced by inelastic
scattering whenever electrons have enough energy to ex-
cite the phonon modes of the junction. The current instead
decreases. As a consequence, the Fano factor increases. We
find it increases with bias as

����
V
p

when the local tempera-
ture of the junction is larger than its lowest vibrational
mode temperature eVc=kB. We also show that with increas-
ing thermal current carried away from the junction to the
bulk electrodes, the inelastic contribution to the Fano
factor converges to a minimum value independent of bias
for V � Vc. Measurements of the Fano factor and con-
ductance may thus provide information on local tempera-
tures and heat transport mechanisms in these systems.
05=95(16)=166802(4)$23.00 16680
Transport in a model atomic gold point contact will be
used to illustrate these findings.

Since the dimensions of the junction are much smaller
than �ph [and the observed inelastic features in quasibal-
listic systems are very small [11,15,16] ] first-order pertur-
bation theory in the electron-phonon coupling captures the
dominant contribution to inelastic scattering [19]. This is
the contribution we calculate in this Letter.

Let us assume that the junction is connected to two
biased bulk electrodes. The electronic states of the full
system are thus described by the field operator �̂ �P
E;��L;Ra

�
E��

E�r;Kk�, constructed from the single-

particle wave functions �L�R�
E �r;Kk� and annihilation

operators aL�R�E corresponding to electrons propagating
from the left (right) electrode at energy E. Kk is the
component of the momentum parallel to the electrode
surface [20]. We also assume that the electrons rapidly
thermalize into the bulk electrodes so that their statistics
are given by the equilibrium Fermi-Dirac distribution,
fL�R�E � 1=fexp��E� EFL�R��=kBTe� � 1g in the left (right)
electrodes with local chemical potential EFL�R�, where Te is
the electronic temperature. In the following we will assume
that Te � 0 K [21], and the left electrode is positively
biased so that EFL < EFR. The stationary scattering states
�L�R�
E �r;Kk� are eigenstates of an effective single-particle

Hamiltonian He which may be computed, e.g., using a
scattering approach within the static density-functional
theory of many-electron systems [20]. The combined dy-
namics of electrons and phonons is described by the
Hamiltonian (atomic units will be used throughout this
Letter) [7]

H � He �Hph �He-ph; (1)

whereHph �
1
2

P
i;�2vib _q2

i� �
1
2

P
i;�2vib!

2
i�q

2
i� is the pho-

non contribution, with qi� the normal coordinate and !i�

the normal frequency of the vibration labeled by the �th
component of the ith ion. He-ph describes the electron-
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phonon interaction and has the following form [7]

He-ph �
X
�;�

X
E1;E2

X
i�;j�2vib

�����������
1

2!j�

s
Ai�;j�J

i�;��
E1;E2

a�yE1
a�E2

	 �bj� � b
y
j��; (2)

where � � L;R and bj� is the phonon annihilation opera-
tor. fAi�;j�g is the transformation matrix that relates

Cartesian coordinates to normal coordinates, and Ji�;��E1;E2

is the electron-phonon coupling constant which can be
directly calculated from the scattering wave functions

Ji�;��E1;E2
�
Z
dr
Z
dKk��


E1
�r;Kk�@�Vps�r;Ri��

�
E2
�r;Kk�;

(3)
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where we have chosen to describe the electron-ion inter-
action with pseudopotentials Vps�r;Ri� for each ith ion
[20].

We use as unperturbed states of the full system (electron
plus phonon) the states j�L�R�

E ; nj�i � j�
L�R�
E �r;Kk�i �

jnj�i, where nj� is the occupation number of the j�th
normal mode. The first-order perturbation to the wave
functions is thus
j�L�R�
E ; nj�i � j�

L�R�
E ; nj�i � j��L�R�

E ; nj�i; (4)
where the first-order correction term is
j���
E; nj�i � lim

�!0�

X
�0�L;R

X
mj0�0

Z
dE0D�0

E0
h��0

E0 ;mj0�0 jHel-vibj�
�
E; nj�ij��0

E0 ;mj0�0 i

"�E; nj�� � "�E
0; mj0�0 � � i�

; (5)

with DR�L�
E the partial density of states of left (right) moving electrons, and "�E; nj�� � E� �nj� � 1=2�!j� the energy

of state j��
E; nj�i. By applying (i) hnj� � 1jbj�jnj�i �

�������nj�
p , and hnj� � 1jbyj�jnj�i �

����������������
1� nj�

p
;

(ii) a�yE1
jn�Ei �

������
f�E

p
jn�E � 1i�EE1

���, and a�E1
jn�Ei �

���������������
1� f�E

p
jn�E � 1i�EE1

���, we observe that the nonvanishing matrix
elements h��0

E0 ;mj0�0 jHel-vibj�
�
E; nj�i correspond to the scattering processes shown in Fig. 1. Carrying out explicitly the

integrals in Eq. (5), the corrections to the wave function can be written as

j���
E; nj�i � �B

�
j�;1 � B

�
j�;3�j�

�
E�!j�

; nj� � 1i � �B�j�;2 � B
�
j�;4�j�

�
E�!j�

; nj� � 1i; (6)

where B�j�;1, B�j�;2, B�j�;3, and B�j�;4 correspond to the diagrams depicted in Fig. 1. For j��R
E; nj�i, the coefficients are given

by:

BRj�;1�2� � i�
X
i�

�����������
1

2!j�

s
Ai�;j�J

i�;LR
E�!j�;E

DL
E�!j�

���������������������������������������������������
��� nj��f

R
E�1� f

L
E�!j�

�
q

; (7)

and

BRj�;3�4� � �i�
X
i�

�����������
1

2!j�

s
Ai�;j�J

i�;RL
E�!j�;E

DL
E�!j�

���������������������������������������������������
��� nj��fLE�1� f

R
E�!j�

�
q

; (8)

where � � 1 and ‘‘�’’ sign are for the scattering diagrams (a) and (c); � � 0 and ‘‘�’’ sign for diagrams (b) and (d).
Similarly, the coefficients in j��L

E; nj�i have the forms BLj�;k � BRj�;k�L 
R�, where k � 1; . . . ; 4; the notation �L 
R�
means interchange of labels R and L.

At Te � 0 K the first-order correction to the current is thus:

I � �i
Z EFR

EFL
dE

Z
dR

Z
dKk~IRRE;E

�
1�

X
j�

�hjBRj�;1j
2i � hjBRj�;2j

2i�

�
; (9)
where ~I��E;E � ��
�
E�

@z��

�
E� � @z��

�
E�

���

E� and hi indi-
cates the ensemble average over phonon states. Here we
assume that the ions of the junction reach thermal equilib-
rium with a well-defined local temperature Tw such that
ensemble averages of phonon states are hnj�i �
1=�exp�!j�=kBTw� � 1� and hn2

j�i � �exp�!j�=kBTw� �
1�=�exp�!j�=kBTw� � 1�2 [7,9]. Equation (9) has been
simplified by using (i) ~IRRE�!j�;E�!j�

’ ~IRRE;E, valid for ener-
gies close to the chemical potentials; and (ii) ~IRRE;E � �~ILLE;E,
a direct consequence of time-reversal symmetry. The cur-
rent is therefore reduced by inelastic effects.

Let us now calculate the corresponding correction to
shot noise. We have previously shown that shot noise can
be written in terms of single-particle scattering states as
[22,23]

S �
Z EFR

EFL
dE
��������Z dR

Z
dK~ILRE;E

��������2
; (10)
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FIG. 2 (color online). Top panel: ratio of the total conductance
G of an atomic gold point contact and its value in the absence of
inelastic effects G0 as a function of bias for different values of
thermal current coefficient (see text): Ath � 10�19 (dotted line),
10�17 (dot-dashed line), 10�15 (dashed line), and 1 (solid line)
dyn=�sK4�. Bottom panel: corresponding Fano factor ratio.

FIG. 1 (color online). Feynman diagrams and corresponding
amplitudes (see text) of the main electron-phonon scattering
mechanisms contributing to the correction of the current and
noise.
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which reduces to the well-known formula S /
P
iTi�1�

Ti� when the eigenchannels transmission probabilities Ti
are extracted from the single-particle states with indepen-
dent transverse momenta [1,22,23]. Replacing (4) into (10)
we get

S �
Z EFR

EFL
dE
��������Z dR

Z
dK~ILRE;E

��������2

	

�
1�

X
j�;k�1;2

�hjBRj�;kB
L

j�;kj

2i�

�
: (11)

Since the summation over vibrational modes contains
only positive terms, shot noise is enhanced by electron-
phonon inelastic effects in the quasiballistic regime.
Therefore, the Fano factor F normalized to the correspond-
ing value in the absence of electron-phonon interactions
(F0) is

F=F0 �

REFR
EFL

dE�1�
P

j�;k�1;2
�hjBRj�;kB

L

j�;kj

2i��

REFR
EFL

dE�1�
P

j�;k�1;2
hjBRj�;kj

2i�
; (12)

which increases with electron-phonon scattering.
Note that due to the orthogonality of phonon states,

the absolute value of the correction to shot noise is smaller
than that to the current [cf. Eqs. (9) and (11)]. Note also
that conservation of energy and the Pauli exclusion
principle play an important role. The former dictates an
onset bias Vc for inelastic contributions; the latter prohibits
the scattering processes depicted in Figs. 1(c) and 1(d) at
Te � 0 K.

These results are illustrated in Fig. 2 where the inelastic
contribution to the conductance and Fano factor are plotted
for a gold atom placed in the middle of two bulk gold
electrodes (represented with ideal metals, jellium model,
rs � 3). Details of the calculations can be found in
Refs. [7,20]. In the absence of electron-phonon interac-
tions, the unperturbed differential conductance G0 is about
16680
1.1 (in units of 2e2=h) and the Fano factor is F0 ’ 0:14 [22]
in the bias range of Fig. 2. Inelastic effects cause a dis-
continuity in the conductance, and a variation of the Fano
factor ratio [Eq. (12)], at a bias Vc � 11 mV, correspond-
ing to the energy of the lowest longitudinal mode of the
system. In addition, the above inelastic corrections depend
on the local temperature of the junction Tw [see Eqs. (7)
and (8)] which, in turn, is the result of the competition
between the rate of heat generated locally in the nano-
structure and the thermal current Ith carried away into the
bulk electrodes [4–7,9,10]. The latter has a temperature
dependence of Ith � AthT4

w [24], where the constant Ath

depends on the details of the coupling between the local
modes of the junction and the modes of the bulk electrodes.
At steady state this thermal current has to balance the
power generated in the nanostructure, which is a small
fraction of the total power of the circuit V

2

R (V is the bias,
R is the resistance) [4,7].

The larger Ath, the larger the heat dissipated into the bulk
and, thus, the lower the local temperature Tw [25]. In the
limit of infinite Ath, i.e., Tw � 0, at any given bias larger
than Vc, electrons can only emit phonons [nj� � 0 in
Eqs. (7) and (8)]. The inelastic contribution to the con-
ductance and Fano factor, therefore, saturate to a specific
value (see Fig. 2). We can derive both the bias dependence
and this saturation value, to first order in the bias, as
follows.

By equating the thermal current Ith to the power gener-
ated in the junction, it is easy to show that Tw � �

����
V
p

[6,26], where the constant � depends on the details of
the thermal contacts between the junction and electrodes.
Let us assume for simplicity a single phonon mode of
2-3
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frequency!. For Tw > !=kB, we expand hnj�i � kBTw=!
in Eq. (9). We then get

G

G0
’ 1� �

3

2

kB
!
	I
�V � Vc�

����
V
p

; (13)

where 
�V � Vc� is the Heaviside function; 	I � j�d�I �
I0�=dV�=�dI0=dV�j is the relative change in conductance
due to inelastic effects at Vc [its value is about 1% for the
specific case, in agreement with experiments on similar
systems [7,11] ]. The inelastic contribution to the conduc-
tance thus decreases with bias as

����
V
p

. This square-root
dependence is clear in Fig. 2 for Ath < 10�15 dyn=�sK4�
which corresponds to temperatures for which the condition
Tw > !=kB is satisfied.

The same analysis can be applied to shot noise. In
Eq. (11), for Tw > !=kB we expand hn2

j�i � 2�kBTw=!�
2

which leads to

S

S0
’ 1� 2�2

�
kB
!

�
2
	s
�V � Vc��V � Vc�; (14)

where 	S � j�d�S� S
0�=dV�=�dS0=dV�j is the relative

change of shot noise due to inelastic effects at V � Vc (it
is about 0.04% for the specific gold junction). The inelastic
correction to shot noise thus increases linearly with bias for
Tw > !=kB. Consequently, F=F0 /

����
V
p

as it is also evi-
dent from Fig. 2.

In the opposite limit of perfect heat dissipation in the
bulk electrodes, i.e., for Tw ! 0 [see Fig. 2, Ath !
1 dyn=�sK4�], then from Eqs. (7) and (8) it is easy to
prove that I=I0 � 1� 
�V � Vc�	I�V � Vc�=V and
S=S0 � 1� 	S��V � Vc�=V�
�V � Vc�. Therefore,

F=F0 �
1� 	S��V � Vc�=V�
�V � Vc�
1� 	I��V � Vc�=V�
�V � Vc�

; (15)

which tends to the constant value F=F0 ! �1� 	S�=�1�
	I� as V � Vc. The predictions reported in this Letter
should be readily tested experimentally.

We acknowledge partial support from the NSF Grants
No. DMR-01-33075 and No. ECS-04-38018. We also
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