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Small Angle Neutron Scattering Observation of Chain Retraction after a Large Step Deformation
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The process of retraction in entangled linear chains after a fast nonlinear stretch was detected from
time-resolved but quenched small angle neutron scattering (SANS) experiments on long, well-entangled
polyisoprene chains. The statically obtained SANS data cover the relevant time regime for retraction, and
they provide a direct, microscopic verification of this nonlinear process as predicted by the tube model.
Clear, quantitative agreement is found with recent theories of contour length fluctuations and convective
constraint release, using parameters obtained mainly from linear rheology. The theory captures the full
range of scattering vectors once the crossover to fluctuations on length scales below the tube diameter is
accounted for.
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Both fundamental and applied understanding of polymer
dynamics through the use of molecular based theories has
seen rapid progress in the past 20 years [1]. This progress
stems from the realization that surrounding chains severely
limit global motion of a test chain in directions perpen-
dicular to its contour but do not prohibit motion along it,
confining each chain to a tubelike region defined by its own
contour [2]. This physical picture is beautifully cast into a
physical theory by the reptation model of de Gennes [3].
The current challenge is to augment this concept of one-
dimensional diffusion of a chain along a tube into a quan-
titative molecular approach describing both the linear and
nonlinear rheological properties as well as the underlying
molecular motions [4–6].

One important question in this context relates to the
chain relaxation in elongational flow. A large step exten-
sional elongation is expected to affinely deform the chain
contour. This will cause the chain radius of gyration par-
allel to the flow to increase and conversely the one in the
perpendicular direction to decrease. After cessation of
the strain, one expects the first relaxation process to be a
retraction of the chain within the still affinely deformed
tube. The longest time scale of this process should be
the equilibration time �R (Rouse time) of the chain along
the tube. This mechanism is related by a fluctuation-
dissipation theorem to the chain contour length fluctua-
tions, entropically driven extension and retraction of the
chain contour which recently was corroborated directly on
a molecular level [7].

Chain retraction in the elongated tube should reduce
the radius of gyration in all directions. Therefore Rperp
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expected to attain a minimum, manifested as an increase in
perpendicular scattered intensity, at some time after the
deformation determined by the Rouse time, before diffu-
sive mechanisms return it to equilibrium. This non-
monotonic behavior, with the minimum at a time consis-
tent with the time scale of Rouse chain retraction, was not
observed in previous experiments on polystyrene [8,9] and
poly(ethylethylene) melts [10]. The requirement of a mea-
surable Rouse time demanded prohibitively large overall
chain dimensions so observations were possible only along
the perpendicular axis of the stretch. Moreover, the data
analysis remained speculative as no quantitative tube ap-
proach was available at the time [11–17].

In this Letter we present a successful new approach to
observe the basic nonlinear relaxation mechanism of chain
retraction. We use a new deformation device, suitable for
investigation of low Tg materials with in situ small angle
neutron scattering (SANS) [18], to study flexible chains
with narrow tube dimensions and accurately established
relaxation times. The investigated polyisoprene sample has
length and time scales specifically tailored to the experi-
mental conditions. Furthermore, we use recent theoretical
improvements, which describe the full gamut of relaxation
processes, to facilitate a proper evaluation of the data. Our
results unequivocally demonstrate the so far elusive non-
linear relaxation process, providing another important con-
firmation of the tube concept in nonlinear rheology.

Protonated and deuterated polyisoprene homopolymers
were synthesized by anionic polymerization in n-hexane
under high vacuum with sec-Butyllithium as initiator.
Virtually identical molecular weights, with respect to de-
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gree of polymerization, were obtained (d-PI: Mw �
254 000 g=mol, Mw=Mn � 1:019; h-PI: Mw �
240 000 g=mol, Mw=Mn � 1:020) and solution blended
in a ratio of 90=10 h=d by mass. The h-PI was measured
in 1% linear shear on an ARES rheometer between
10�2–102 rad � s�1 and temperatures between �35 and
55 �C.

SANS experiments were carried out at SANS-1, PSI, CH
at a wavelength � of 0.8 nm to cover a scattering vector
range 0:03 � q � 2 nm�1. The data were corrected for
empty beam, detector sensitivity, solid angle dependency,
and absolutely calibrated with a 1 mm water standard.
Radial, as well as sector, averaging in the anisotropic
case with opening angle 10� was used to allow principal
axes to be analyzed.

The samples were mounted in a homebuilt elongational
device [18] at �45 �C in N2 atmosphere and uniaxially
stretched to a strain of � � 1:7 in 25 s at a constant strain
rate corresponding to 2300 s�1 at RT ( _��R � 120).
Microscopic relaxation times and sampling time were
decoupled by an appropriate quench to T < Tg within
1 s. The initial deformed state was measured as the refer-
ence. Relaxation times of 0.4, 3.22, 8.44, and 15.72 times
�R (0:045 s at RT) were achieved by annealing the sample
gradually through a temperature ramp for which equivalent
times at RT are calculated using known linear time-
temperature shifts, then quenching anew.

Experimental plots of scattered intensity against scatter-
ing vector (Fig. 1) demonstrate that, throughout the relaxa-
tion regime, the anisotropy is strong at large length scales,
weakening as the scale of the tube diameter is reached at
higher q. As relaxation progresses, so features at higher q
relax to isotropy faster than at lower q. At t � 3:22�R the
parallel scattering shows significant relaxation relative to
the fully affine curves (dotted lines). However, throughout
this time interval, the perpendicular scattering remains
close to the affine curve over almost the entire range of
scattering vectors [Fig. 1(a)–1(c)]. Of especial note is the
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small, but significant, increase in scattered intensity be-
tween t � 0 and 0:4�R, visible in the perpendicular com-
ponent of the scattering [Fig. 2(c)]. We take this to be an
unambiguous experimental signature of chain retraction,
while relying on the comparison with theory to confirm
that the magnitude of the increase is consistent with the
retraction process.

In the model of Graham et al. [5] the relaxation mecha-
nisms of reptation, contour length fluctuations, retraction,
and constraint release are formulated into a stochastic
microscopic evolution equation for the dynamics of the
space curve describing the tube contour, Rs�t�, where s is a
continuous variable labeling distance along the tube con-
tour and t is time. From this equation a deterministic partial
differential equation for the tube tangent vector correlation

function, f�s; s0; t� � h@Rs�t�
@s

@Rs0 �t�
@s0 i, is derived, allowing the

tube configuration, stress tensor, and the single chain
structure factor to be computed for any nonlinear deforma-
tion. For full details see Refs. [5,19].

Following exactly the approach in Ref. [5] the two
material-dependent parameters were determined by fitting
the linear theory of Likhtman and McLeish [4] to linear
oscillatory shear data, yielding RT values of �e � 1:34	
10�5 s and Ge � 5:05	 105 Pa, which indicates that the
chains have 58 entanglements and a Rouse time of 0.045 s.
The chain radius of gyration was obtained by fitting a
Debye function to scattering data from the fully relaxed
melt, then the relation R2

g � a2Z=6 leads to a tube diameter
value of a � 6:3 nm. Note that, since the degree of entan-
glement, Z, is determined by the entanglement modulus,
Ge, the value of the tube diameter and therefore the tube
persistence length are deduced from rheological measure-
ments alone.

The theory outlined in [5] predicts the shape of the
coarse-grained tube path, which is sufficient to predict
changes in Rg. However, it provides no detail on length
scales shorter than the tube diameter, necessary for a data
FIG. 1. Comparison of measured and
predicted normalized structure factors
after 0, 0:4�R, 3:2�R, and 15:7�R [(a)–
(d), respectively]. The solid lines are
predictions of the theory of Graham
et al. [5], and the dotted lines correspond
to a completely affine deformation on all
length scales.
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FIG. 2. Data and theory for relaxation of the radius of gyration parallel and perpendicular to the stretch direction after
deformation (a),(b) and experimental data highlighting the nonmonotonic region of Rperp

g (c).

PRL 95, 166001 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
14 OCTOBER 2005
comparison across the measured range of wave vectors. In particular, the high-q scattering is dominated by chain
fluctuations about the mean path defined by the tube, for which we need a suitable crossover formula. The struc-
ture factor can be expressed in terms of the monomer positions, rs,

S�q� �
1

Z2

Z Z

0

Z Z

0
exp

�
�
X
�;�

q�q�
2
h�r�s � r�s0 ��r�s � r�s0 �i

�
dsds0; (1)
where �� � �� and h� � �i denote averages over monomer
fluctuations and tube positions, respectively, and � and �
are Cartesian components. Therefore we require an expres-
sion for the following two-point monomer correlation

h�r�s � r�s0 ��r�s � r�s0 �i; (2)

which must be valid for all length scales probed by the
scattering experiment. The mean position of each mono-
mer, R, is defined by the tube, and we denote the fluctua-
tions about this mean by �s.

r�s � R�s 
��s: (3)

To obtain a straightforward, but usable, crossover formula,
we make the simplest possible assumption about the mono-
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mer fluctuations, �s: we assume these are statistically
isotropic, with a magnitude independent of deformation
of the mean position, Rs, allowing us to write

h�r�s� r�s0 ��r�s� r�s0 �i � h�R�s� R�s0 ��R�s�R�s0 �i


 ���s���s0 ����s���s0 �:

The average over mean positions can be found by integrat-
ing the deformed tube tangent correlation function as
computed by the theory

h�R�s � R�s0 ��R�s � R�s0 �i �
Z s0

s

Z s0

s
f���s1; s2�ds1ds2:

For the chains to obey Gaussian statistics in equilibrium
the monomer fluctuations must be
���s ���s0 ����s ���s0 � �
a2���

3
js� s0j �

Z s0

s

Z s0

s
feq
���s1; s2�ds1ds2; (4)

feq
���s; s

0� is the equilibrium tube configuration, given by

feq
���s; s

0� �

�
a2

3 ��� if js� s0j< 1=2
0 otherwise

; (5)

in which tangent correlations persist for the length of a single tube segment. With the assumption that monomer
fluctuations are independent of the deformation, Eq. (4) is valid for the deformed case as well. Adding these two
contributions, we obtain an expression for the desired average monomer correlation that can be used in Eq. (1)

h�r�s � r�s0 ��r�s � r�s0 �i �
a2���

3
js� s0j 


Z s0

s

Z s0

s
�f���s1; s2� � f

eq
���s1; s2��ds1ds2: (6)
A similar expression to this is obtained from the Warner-
Edwards [20] model for polymer networks, with the as-
sumption of isotropic localizing potentials, which corre-
sponds directly to our assumption of isotropic fluctuations
[21]. The model predictions for the tube configuration were
computed using a deformation history corresponding to
that from the experiments. After each relaxation interval,
the resulting tube configuration was used to compute the
single chain structure factor via Eq. (1).
Figure 1 shows a comparison between data and theoreti-
cal predictions for the full range of scattering vectors at a
range of relaxation intervals. The agreement along the
principle strain axes between theory and experiment is
close, especially considering the complete absence of non-
linear fitting parameters. The only marked region of dis-
agreement occurs around qa * 1 for the shortest relaxa-
tion intervals (t < �R), and the disagreement lessens as t
increases further. There are several possible sources of the
1-3
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small discrepancies. First, deformation of the tube localiz-
ing potentials [21,22] may occur in our experiments, but a
treatment of this effect requires a new generation of en-
tanglement models, which contain a more detailed descrip-
tion of constraints and their evolution. Second, the
crossover function, used in Eq. (5), may be too crude and
more elaborate choices can be made. Furthermore, some of
the discrepancy may also be attributed to a recently re-
ported inconsistency of the tube model, in which the tube
diameter extracted from rheology is different from the
value obtained from neutron spin echo or diffusion mea-
surements [23,24]. In fact, fitting the data at t � 0 with the
Warner-Edwards model, where the tube diameter is a free
fitting parameter, suggests a value � 4 nm. A tentative
calculation with this smaller tube diameter relieves the
disagreement in the location of the crossover to subtube
length scales. However, our primary concern, evidence for
retraction contained in the low-q data, is not influenced by
these details.

A plot of the relaxation of the deformed radius of
gyration with time portrays the SANS signature of chain
retraction (Fig. 2). Since an affine Debye function will not
simultaneously capture the whole q range of the deformed
data, we obtained deformed radii by fitting a Debye func-
tion to the q region roughly corresponding to the dimen-
sions of the whole chain. The greatest sensitivity to this
deformed Rg occurs in the region around q 0:2 nm�1 so
we used an unweighted least squares fitting procedure to
emphasize this low-q region. Values were acquired from
the theory in an identical manner. Uncertainties in the
deformed Rg due to neutron counting errors were obtained
by using the bootstrap method [25]. Figure 2(b) clearly
shows the experimental observation of a pronounced mini-
mum in Rperp

g �t�, providing a microscopic confirmation of
the tube retraction concept. The minimum is not a random
artifact due to counting errors since its depth significantly
exceeds these error bars. The applied macroscopic strain is
subject to an uncertainty of5%, which does not affect the
observation of retraction since all data points are from a
single deformation. The theory demonstrates that the time
and depth of this minimum are consistent with the retrac-
tion process, although the model systematically underpre-
dicts the degree of deformation by 4% of the total
deformation. This shift can be explained by uncertainties
in the experimentally applied strain. Figure 2(c) shows a
magnified plot of experimental data for the perpendicular
direction in the region of nonmonotonic behavior to further
demonstrate the evidence for retraction.

In conclusion, we have tracked the relaxation of mono-
disperse, linear entangled polymers following a large uni-
axial extension step using SANS measurements. These
measurements elucidate chain relaxation over a broad
range of relevant length scales and were compared to the
predictions of a recent nonlinear tube model. Good quan-
titative agreement was found between data and theory over
a wide range of length scales, including a minimum in the
16600
deformed radius of gyration perpendicular to the stretch,
observed a short time after cessation of flow. This long-
standing consequence of the retraction process had not,
previously, been confirmed experimentally. Modeling
these data provides a significant quantitative test for mo-
lecular theory and illustrates the possibility of linking
molecular structure and processing history.

The authors thank M. Hintzen for the characterization of
the polymers. Special thanks go to H. Feilbach and P.
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FZJ Workshop) and to the PSI for the availability of EU
funding and allocation of urgent beam time.
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