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Universality and Finite-Size Scaling of the Specific Heat of 3He-4He Mixtures
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We have measured the heat capacity of 3He-4He mixtures confined in films of thickness 48.3 and
986.9 nm. The confinement is defined by direct bonding of two silicon wafers. The heat capacity is
measured using an ac technique and then transformed to correct for exponent renormalization effects. The
data address the expected universal critical behavior along the � line as function of 3He concentration. We
discuss the results of several analyses of the data, and we show that a universal collapse can be achieved
for all the mixtures. However, this is on a locus which differs from that of the pure system. An alternative
analysis is also presented which yields collapse of all the data under certain assumptions. We believe these
data are the first to test universality of finite-size scaling for the specific heat along a locus of transitions.
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The superfluid transition of 4He has been studied exten-
sively as an example of a continuous phase transition. The
behavior of the specific heat and superfluid density are well
known in the thermodynamic limit. Critical exponents
have been obtained experimentally and have been calcu-
lated to high precision [1–3]. Also, there have been a
number of studies where helium is confined in a uniform
geometry where the smallest spatial length L can become
comparable to the temperature-dependent correlation
length [4–6]. In this limit, according to correlation-length
scaling, one expects that for various L’s one should obtain
a collapse of data when plotted as a function of L=� where
� is the bulk correlation length [7,8]. Experiments have
shown that for films, which crossover to two dimensions as
the transition is approached, finite-size scaling works well
in the region where the confined helium is normal but fails
in the region where it becomes superfluid [4,5]. The situ-
ation where the crossover dimension is not two, but one or
zero, has not been studied as extensively at this time.

With the addition of 3He to 4He, the bulk superfluid
transition shifts to lower temperatures defining a locus at
saturated vapor pressure referred to as the � line. The
mixtures are expected to be in the same universality class
as pure 4He. Thus, the exponents are expected to be uni-
versal until one approaches the crossover region of the
tricritical point at a 3He concentration x � 0:67. Here the
� line joins the first order phase separation lines. Also,
studies along the analogous � line at x � 0, but as a
function of pressure, are expected to show a similar uni-
versal behavior. This universality implies for instance that
the critical exponent of the specific heat � should remain
unchanged. Interestingly, along either � line, one finds that
the experimentally determined value of � becomes more
negative as one moves away from saturated vapor pressure
P � Psat, and x � 0 [9–11].

The specific heat of confined mixtures reported here
addresses the issue of universality in two different ways.
The data at various concentrations are expected to obey
finite-size scaling if one allows for the fact that the magni-
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tude of the correlation length and the amplitude of the
specific heat depend on concentration. In addition, the
specific heat is sensitive to the universal value of � in a
different way from that of the mixtures in the thermody-
namic limit. We note that we have reported results for the
superfluid density of confined mixtures at a single value of
L which were also shown to scale on the same locus as for
x � 0 [12]. However, the specific heat provides a much
more sensitive way to test universality because � is very
close to zero. For instance, a large change by as much as a
factor of 2 in � would translate in a change of only�0:6%
in �, the exponent governing the behavior of the superfluid
density. This would have negligible effect in the finite-size
scaling of the superfluid density, but, as we will see, it has a
dramatic effect on the scaling of the specific heat.

In this work we have used two experimental cells to
study the specific heat of mixtures of 3He and 4He confined
in a planar geometry between two wafers of silicon. These
cells are formed by first patterning the silicon dioxide
grown on one of the wafers into a series of posts about
0.5 mm apart, and then using direct bonding of a second
wafer to form a cell. The thickness of the oxide determines
the small confinement L. The homogeneity of L can be
determined for L>�500 nm by infrared interference
measurements. One finds that the 986.9 nm cell is uniform
to better than 1% across the 5 cm wafers. The oxide pattern
has a continuous 0.4 cm border which, upon bonding,
forms a leak-tight seal. Further details about these cells
can be found in previous publications [4,13]. When the cell
is filled with helium a small amount of liquid, �1 mm3,
collects in the filling line above the cell. This is used as a
marker for T� of bulk helium. The cell has two doped-
germanium thermometers epoxied directly on the silicon.
One of these is used to regulate the average temperature
while the other is used simultaneously to determine the
amplitude of temperature oscillations. These oscillations
are imposed by a uniform film heater which is driven at a
fixed frequency, typically in the range of 25 to 45 Hz. The
cell is connected to two temperature-regulated stages: one
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stage is where the filling line is attached, and where a valve
is located; the other is a stage which maintains the cell
colder than the filling line. The equations which govern the
temperature response of the cell in this arrangement and
the procedure for extracting the specific heat of the con-
fined helium have been published [4,13].

Shown in Fig. 1 are the specific heat data, Cpx, for
7 different 3He concentrations in cells of two different
L’s [14]. These are plotted as a function of t �
j1� T=T��x�j where T��x� is the transition of the bulk
helium. The overall behavior of these data show two
effects. One is the decrease in specific heat as one goes
from the large to the small L at fixed x. The other is the
decrease in specific heat at fixed L as one increases x. To
test the universality of correlation-length scaling, and col-
lapse these data, one must recognize first that the true
critical behavior is not obtained in Cpx but in Cp�, where
� � �3 ��4, the difference in the chemical potentials
[15,16]. This requires a thermodynamic conversion of Cpx,
and a conversion of the distance to criticality from a path of
constant x, where t � j1� T=T��x�j, to a path of constant
�, where � � j1� T=T����j is the relevant variable [9].
These conversions can be done by using thermodynamic
derivatives along the � line @x

@T��, @�@T��, @s@T��, where s is the
entropy per mole [9,17]. We have used values tabulated in
Ref. [9] and fit these to a function so that one can extract
the values which correspond to the concentrations of our
data. Ideally, one should use values constructed for fixed L,
however, no such data are available. Cp� can be related to
Cpx as follows: [9,17]
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where in practice the derivatives can be taken at t � 0, i.e.,
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FIG. 1. Cpx for the four mixtures measured in the 48.3 nm cell
and the three mixtures confined to the 986.9 nm cell. These are
plotted together to demonstrate the overall behavior of confined
mixtures. The upper and lower branch for each mixture repre-
sents data below and above T�, respectively.
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along the � line. The calculation of � involves an iterative
procedure which converges rapidly [9]. The result of our
calculation is shown in Fig. 2 where Cp� is plotted as a
function of �. Notice that relative to Cpx, these data have a
larger magnitude and have a smaller � than the equivalent
t. Note that the amplitude of Cp� is not a monotonic
function of concentration unlike Cpx. There is no reason
a priori to expect it should be monotonic and this has also
been seen in previous analyses of bulk mixtures [9,18]. To
test correlation-length scaling one can use an equation
which is a modification of the equation used for x � 0 [19]:

�C���
��������
��
A��x�

��������� g2

��
L

��x; t�

�
1=�
�
: (2)

Here, �C is the difference between the bulk and confined
specific heats defined as 	Cp���;1� � Cp���; L�
 and A�
and �� are the specific heat amplitude and critical expo-
nent of Cp���;1�. This equation differs in several respects
from that used for pure 4He. In the latter case one does not
need the factor �=A, since it is always the same at x � 0
for any L. For the mixtures, however, A� is not universal
and one must take this into account. The exponent ��, on
the other hand, is expected to be universal along the � line;
however, we leave this explicitly in Eq. (2). On the right
hand side we indicate that for each concentration ��x; t�
will differ [20]. Thus the scaling variable, which for pure
4He with �0 � �0�0� can be taken as t�L=�0�

1=�, must now
allow for �0 � �0�x�. To calculate �0�x� we note that the
correlation length below T� is related to the superfluid
density [21,22] and one may write for �0

�0�x� � �0�0�
T��x�
T��0�

��0�
��x�

k�0�
k�x�

; (3)

with � and k being, respectively, the density and the
amplitude of the leading temperature dependence of the
θ
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FIG. 2. Cp� converted from the Cpx data seen in Fig. 1 for the
four mixtures measured in the 48.3 nm cell and the three
mixtures confined within the 986.9 nm cell. Here, � � �3 �
�4, the difference in the chemical potentials of 3He and 4He.
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FIG. 3. Data for T > T� scaled according to Eq. (2). The data
for pure 4He (solid symbols) are plotted using � � �0:0115
while the mixture data (open symbols) use an � close to�0:025:
see text.
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FIG. 4. Data for T > T� plotted according to Eq. (2). Contrary
to Fig. 3, all data are plotted using � � �0:0115 but with A�
retained at its best fit value: see text.
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superfluid fraction. We use �0�0� � 1:42 nm [23] and vary
the value for x � 0 according to Eq. (3). We have used the
data from Ref. [24] for the behavior of k�x�.

To implement Eq. (2) one needs Cp���;1�. One could
proceed in two ways. One could take existing calculations
of Cp� [9,18] and interpolate these to the concentrations at
which we have measured Cpx�t; L�. Alternatively, one
could go to the primary data Cpx and, from a suitable
representation of these, interpolate to the concentrations
of interest. Then one can construct Cp���;1� and � as
outlined above. We have chosen the second route since it
gives us a direct check on our calculation of Cp���; L�.
This also allows us to explore the role of � line parameters
simultaneously for Cp���;1� and Cp���; L�. Another ad-
vantage of this procedure is that possible systematic errors
in the calculation, such as arising from the � line parame-
ters, become second order when one calculates the differ-
ence �C which is needed for scaling. When the
constructed Cp���;1� is fitted to the function

Cp;���;1� �
A�
��

�����1�D��
0:5� � B�; (4)

the results for the various parameters, A�; ��;D�; B�, fit
smoothly as a function of x within the parameters obtained
with the original experimental data. This effectively checks
on the correctness of our calculation of Cp���;1�. In
particular, one finds, as previously, that the best exponent
that describes this specific heat is � � �0:025 with minor
variations as a function of concentration. This contrasts
with � � �0:012 for the data at x � 0.

In this analysis we have limited ourselves to data for
which � < 3� 10�3 to avoid higher order corrections in
Eq. (4). With these results one can now calculate the left-
hand side of Eq. (2) and see if one achieves universal
collapse. This is shown in Fig. 3 for T > T�. For this plot
we have used for each mixture whatever set of ��; A� was
obtained from the analysis of Cp���;1� and the corre-
sponding �� which can be obtained from the hyperscaling
relation, �� � 2� 3��. It is clear from this plot that the
seven mixtures for both values of confinement L do indeed
fall on a universal locus, while the data for x � 0 are at a
quite distinct locus. The same is true for the data for
T < T�.

From the analysis leading to Fig. 3 it is easy to ascertain
that variations in the value of �� coming from �� are not
important. A very similar plot would be obtained were one
to take a fixed �� � 0:6705, as has been used to scale data
for x � 0 [5]. Further, the effect on the scaling plot of the
term ��� is also not very important (although not negli-
gible), i.e., �� is very close to zero in all cases. The major
determinant in the lack of universal collapse between the
mixtures and the pure system is in the factor��=A�. In this
respect, finite-size scaling along the � line, and the ex-
pected universality, is more demanding and hence more
sensitive to the data than the equivalent expectation for the
16570
mixtures in the thermodynamic limit. In the latter case one
wants universality in �� and amplitude ratios. With the
confined system, the expected universal scaling function
has both the exponent and the nonuniversal amplitude A�
as multiplicative factors.

To explore further this problem between x � 0 and x �

0, we have tried a variety of other analyses. We have fixed
the exponent in the range of �0:0115 to �0:025 and fitted
all bulk data to extract the amplitudes A�’s which corre-
spond to each fixed power law. This, of course compro-
mises the goodness of the fits, but nevertheless yields a set
of amplitudes which correspond to a universal exponent.
The result of this analysis is scaling plots, which in one
extreme, � � �0:0115, neither the mixtures nor the pure
system fall on a universal locus. At the other extreme, � �
�0:025, the mixtures collapse on a separate locus from
x � 0. In this latter case a universal collapse can be
1-3



(L ξ(x, t))1 0.6705

( ∆
C

) θ
−0

.0
11

5   (
1

A
′)

10−3 10−2 10−1 100 101 102 103 104

0
2

4
6

8
10

  L             x
48.3     0.0747
48.3     0.1496
48.3     0.2386
48.3     0.3575
986.9   0.1293
986.9   0.2039
986.9   0.3758
48.3     0.0000
986.9   0.0000

FIG. 5. Data for T < T� plotted according to Eq. (2). All data
are plotted using � � �0:0115.
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achieved if one introduces a numerical factor for �0�0�
which is not justified on the basis of Eq. (3).

Yet another possible approach is to assume that �� for
the mixtures is not the true asymptotic exponent. Thus, one
takes �� as universal at the value obtained by the pure
system. However, the amplitudes A� are retained as the
‘‘best fit’’ values. This yields the scaling plot shown in
Fig. 4. This represents a reasonable collapse of all the data
on a universal curve with the same universal exponent.
Note that this plot tests two ideas: finite-size scaling with
the two different confinements; and universality with the
7 mixtures. The equivalent plot for T < T� is shown in
Fig. 5. Here, the collapse is not as good as for T > T�, but
probably satisfactory. Note that in the region of the specific
heat maximum (shown as a minimum in Fig. 5) there is a
lack of scaling which is also seen in the pure system [5].

These last two figures might be taken as evidence of
universality of finite-size scaling along the � line with
mixtures. However, one should be aware that the use of
amplitudes A�’s which do not correspond to the exponent
� � �0:0115 that is used in this plot is not a self-
consistent analysis. The alternative to this is Fig. 3 with
the less palatable conclusion that the point at x � 0 is
somehow special on the phase diagram. This is not sup-
ported on any theoretical basis [25].

In conclusion, we find that for x � 0, we obtain a
collapse of all the data on a universal locus. This involves
seven different mixtures in two different confinements
differing by a factor of �20. This must be viewed as a
significant result supporting universality and finite-size
scaling along the � line. However, our analysis also shows
that the data at x � 0 cannot be made to collapse on the
mixtures in a self-consistent way. This is due to the fact
that the mixtures and the pure system do not yield the same
critical exponent in the bulk. This is an issue which possi-
bly will be resolved by new bulk measurements.
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