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Droplet Detachment and Satellite Bead Formation in Viscoelastic Fluids
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The presence of a very small amount of high molecular weight polymer significantly delays the pinch-
off singularity of a drop of water falling from a faucet and leads to the formation of a long-lived
cylindrical filament. In this Letter, we present experiments, numerical simulations, and theory which
examines the pinch-off process in the presence of polymers. The numerical simulations are found to be in
good agreement with experiment. As a test case, we establish the conditions under which a small bead
remains on the filament; we find that the presence of a bead is due to the asymmetry induced by the self-
similar pinch off of the droplet.
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FIG. 1. (a) A drop of water falling from a faucet, the satellite
drop is about to disintegrate into a number of even smaller
droplets, R � 3 mm. (b),(c) Close-up of the pinch region, with
100 ppm of PEO solution added. Left-hand part of the photo-
graphs: numerical simulations. Right-hand part (in gray with
white spots due to lensing): experiment. (b) R � 3 mm, tc � t �
6; 2; 0;�3;�5 ms; (c) R � 0:4 mm tc � t � 1; 0 ms. Model
parameters: �p � 3:7� 10�4 Pa s, � � 1:2� 10�2 s, b �
2:5� 104, �s � 1� 10�3 Pa s, � � 6� 10�2 N=m.
The pinch off of liquid drops, often with viscoelastic
properties, has attracted considerable attention in recent
years [1], not the least owing to its enormous technological
applications in biotechnology, microscale manufacturing,
and spray technology [2–4]. From the fundamental side,
the addition of minute amounts of polymers has been
shown to inhibit the finite-time singularity that happens
at breakup [5]. From the applied side, in many applica-
tions, such as fire fighting [6], ink jet printing [3], or
pesticide deposition on plant leaves [7], complex fluids
have been used to control or modify drop sizes. All these
applications are related to the elevated elongational vis-
cosity of polymer solutions. For dilute aqueous solutions,
capillary breakup and the resulting filament thinning is the
only known way to determine this crucial material parame-
ter unambiguously in a purely elongational flow. In this
Letter, we provide a complete experimental and numerical
description of the first stages of drop detachment for dilute
aqueous polymer solutions. A comparison between experi-
ment and simulation enables us to quantitatively determine
the polymer relaxation time and to test the model’s de-
scription of the late stages of pinching.

If a drop of pure water falls from a faucet [Fig. 1(a)], the
fluid neck pinches near the drop as well as near the nozzle,
to also form a much smaller ‘‘satellite’’ drop. If a small
amount of polyethylenoxide (PEO) is added [Fig. 1(b)],
pinching is inhibited and thin cylindrical threads remain,
connecting to the small satellite bead in the middle. For
small nozzle radii R [cf. Fig. 1(c)], no satellite bead is
formed and the thread connecting to the falling drop is
uniform. All times are given relative to the time tc when the
thread is first formed. The uniform thread connected to the
falling drop forms a single unit of the periodic ‘‘beads-on-
string’’ structure [8,9] observed for the breakup of a poly-
meric jet. The satellite drop of Fig. 1(b) is a small second-
ary structure, typical for low-viscosity solvents [10,11].
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Our experiments were performed with aqueous solutions
of PEO with a molecular weight of 4� 106 amu, in con-
centrations of 5 to 2000 ppm. Nozzle radii R ranged from
R � 0:25 mm to R � 5 mm and the droplets were gener-
ated using a syringe pump in a quasistatic mode. Pictures
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were taken with a high speed camera (1000 frames=s with
512� 512 pixels, right-hand parts of the images in Fig. 1).
All experiments were repeated with different batches of
polymer, with results identical to within the resolution
shown.

The left-hand part of Figs. 1(b) and 1(c) are simulations
of the hydrodynamic equations, describing the polymer
using a FENE-P model [12], which treats a polymer as
two particles connected by an entropic Hookean spring of
finite extensibility. The particles are subject to viscous drag
and thermal fluctuations; the spring is characterized by a
relaxation time � and a normalized maximum extensibility
b. To further simplify the description, we use a 1D long-
wavelength theory for the fluid motion [1], leading to a
coupled set of equations for the local radius h�z; t� of the
fluid column, the mean fluid velocity v�z; t�, and the radial
and axial components of the polymeric stress �r�z; t�,
�z�z; t�:

@th2 � @z�h2v� � 0; (1)

��@tv� v@zv� � ��@z�1=R1 � 1=R2�

� @z���z � �r � 3�s@zv�h2�=h2 � g;

(2)

@t�z � v@z�z � �2@zv� �@tZ� v@zZ�=Z�

� ��z � �p=�� � Z�z=�; (3)

@t�r � v@z�r � ��@zv� �@tZ� v@zZ�=Z�

� ��r � �p=�� � Z�r=�: (4)

Equation (1) expresses volume conservation; (2) is
Newton’s equation for the acceleration of a fluid particle,
driven by the surface tension � times gradients of the mean
curvature [first term on the right-hand side of (2)]. The
second term represents polymeric stresses and viscous
stresses from the solvent fluid (�s solvent viscosity), and
the final term comes from gravity. Equation (3) describes
the stretching of polymers by the extensional flow @zv > 0
inside the fluid neck, leading to the growth of axial poly-
mer stress �z, while �r is inconsequential for the present
problem. If 2@zv is greater than the inverse relaxation time
1=�, �z grows exponentially until the second term of Z �
1� ���z � 2�r�=�b�p� is no longer negligible, signal-
ing full extension of the polymer chains. The zero shear
rate viscosity �p is determined by rheological measure-
ments [13].

On the other hand, the polymer time scale � � 1:2�
10�2 s, needed to achieve the very good agreement be-
tween theory and experiment reported in Fig. 1, is about 4
times as large as determined by rheological measurements
in [13]. Similar discrepancies have already been reported
in [14] and may result from either polydispersity or mul-
tiple time scales present in a single polymer chain. The
value of the extensibility parameter b � 2:5� 104, on the
other hand, only affects the final thinning of threads, to
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which we return below. Again, this value is significantly
higher than the value of b � 104 [13] found by rheological
measurements, in line with similar discrepancies found in
previous studies [14,15].

We now turn to the physical mechanism responsible for
the formation of the satellite bead. From both experiment
and simulation we find that the initial motion of the liquid
column is well described by Rayleigh’s linear theory
[1,16,17], which predicts exponential growth of the most
unstable mode. Thus a symmetric trough forms on the
liquid bridge that separates the falling drop from the nozzle
[first panel of Figs. 1(b) and 1(c)]. In the second panel of
Fig. 1(b), the neck shape has turned asymmetric, signaling
the transition to a nonlinear similarity solution, discussed
in more detail below. For the smaller nozzle [cf. Fig. 1(c)],
on the other hand, the shape turns directly to a uniform
cylinder. The remaining frames of Fig. 1(b) show how the
asymmetric neck structure evolves into a satellite bead.

Thus the existence of a satellite bead depends on the
time at which a polymeric thread is formed: if the thread
appears before the neck has turned asymmetric, no satellite
bead is formed, otherwise there will be a satellite.
Figure 2(a) shows a phase diagram for the existence of a
satellite bead. For low polymer concentrations and large
nozzle radius a bead is observed, while in the opposite
corner, below the solid line, no bead is formed. In the
narrow strip between the dashed and the solid lines a
bead is formed, but it is so small that it gets stretched out
by elastic stresses and eventually disappears.

To show that the condition for bead formation is given in
terms of the symmetry of the initial necking alone, we use
the asymmetry parameter � introduced in [17], whose
value is zero for a symmetric and unity for a staircase
profile. In Fig. 2(b) we show � as a function of R (at
constant polymer concentration of 100 ppm), evaluated
just before a thread is formed. The asymmetry parameter
transitions from zero (signaling symmetric pinching) to a
nonzero value at a nozzle radius which corresponds to the
boundary between the ‘‘bead’’ and ‘‘no bead’’ region of the
phase diagram. Plots at other polymer concentrations show
similar agreement. We now derive a quantitative criterion
for the appearance of a satellite bead. At early times
Rayleigh’s theory predicts growth of the disturbance of
the liquid column with a rate !R � �0:118�=��R3��1=2,
with � the surface tension and � the liquid density. In spite
of the presence of gravity, the neck profile is symmetric
around its minimum radius and fits to the smallest neck
diameter hmin (dashed lines in Fig. 3) agree remarkably
well with theory (see inset), in agreement with previous
work on dripping [16,17]. For later times, as the bridge
becomes more strongly deformed, the asymmetric pinch-
off solution [18] hmin � a���t0 � t�

2=��1=3 takes over
(straight lines). Here t0 is the extrapolated singularity
time, at which the droplet would pinch off in the absence
of polymer. The experiments confirm the universality of
the amplitude a � 0:8, which agrees well with the theo-
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FIG. 3. The minimum neck radius versus time for nozzle radii
R � 0:4 mm (circles), R � 1:5 mm (triangles), and R � 4 mm
(squares), at a polymer concentration of 100 ppm, where t0 is the
extrapolated time at which pinch off would take place for a
Newtonian liquid. The straight lines are fits to a 2=3 power law,
yielding a universal prefactor of 0.8 (note that the neck radius is
reported in units of R). The dashed lines are exponential fits to
the disturbance amplitude 1� hmin=R. The squares in the inset
are the corresponding growth rates; the line is the theoretical
prediction for the most unstable Rayleigh mode of an inviscid
fluid.
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FIG. 2. (a) The phase boundary for satellite bead formation,
from experimental runs at polymer concentrations of 5, 10, 20,
50, 100, 200, 500, 1000, and 2000 ppm and nozzle radii R �
0:25, 0.75, 1, 1.5, 2, 3, 4, and 5 mm (triangles). Between the
dashed and the solid lines a bead is formed, but subsequently
disappears. (b) The asymmetry parameter � for the 100 ppm
runs measured from the last video frame before the appearance
of a thread. The vertical lines correspond to the transition lines
in (a).
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retical value of a � 0:7 [18], considering the limited scal-
ing range. This confirms the purely inviscid character of
this stage of motion. Our observations show that the tran-
sition from an asymmetric to a symmetric shape occurs
at a fixed value of hmin=R � 0:17	 0:01, corresponding
to a sufficiently strong deformation of the liquid bridge.
The power-law behavior of hmin is not observed for the
smallest nozzle radius: we have not yet transited into the
similarity solution regime before the elastic forces due to
the polymer intervene and lead to the formation of the
filament. If the growth rate !R of the Rayleigh instability
exceeds ��1, such that polymer stretching takes place
during the initial motion, no bead is formed. Thus Rcrit �

�0:118�2�=��1=3 
 1 mm is the critical radius above
which a bead is formed, in good agreement with the find-
ings for low polymer concentrations. The influence of
polymer concentration is relatively minor, in agreement
with this argument: the critical radius changes only by a
16450
factor of 2, while the concentration varies by 2 orders of
magnitude. The slight increase of Rcrit with concentration
reflects an increase in the relaxation time �, due to overlap
above the critical concentration c� � 300 ppm [5,19].

Having obtained a reliable estimate of the FENE-P
parameter � � 0:012 s at a polymer concentration of
100 ppm from the early stages of pinching, we now turn
to the description of the polymeric thread at later times.
Disregarding the finite extensibility of the polymers, the
thread radius is predicted [9,11] to thin as hthread �
h0 exp��t=�3���, a law well supported [20] by experiments
at large solvent viscosity, where � � �. In the present
experiment, we find exponential behavior for about a de-
cade in radius, but the decay rate depends significantly on
both the nozzle radius and the polymer concentration, in
agreement with other recent experiments [19]. At a poly-
mer concentration of 100 ppm, we find values between � �
0:011 s (R � 5 mm) and � � 0:003 s (R � 0:4 mm). The
value for the largest radius agrees with the polymer relaxa-
tion time obtained from the simulation. As we shall see
below, nonlinear saturation effects are more important for
small R, which is a possible reason for the smaller effective
relaxation time.

Indeed, the following estimate shows that polymers
have to be stretched very significantly before they gener-
ate a stress sufficient for thread formation. The total de-
formation the polymers have to undergo before elastic
stresses become strong enough to balance surface tension
can be estimated as �R=hthread�

4 � �2��=��pR��
4=3 [9,11].
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FIG. 4. The migration of the primary bead for the 50 ppm, R �
1:5 mm run (pictures are 1� 4 mm). The profiles are shown in
time steps of 2 ms. The bead is pushed upward against the
direction of gravity.
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Evaluating this for R � 3 mm, we find that the polymeric
stress has increased by 1:4� 104 at the time a thread is first
formed. The rheological data of [13] suggests that at that
point polymers have already reached a significant fraction
of their total length, a picture that is supported within our
FENE-P modeling. However, even if the thinning rates are
found to be in good agreement with the experimental data
in the beginning, a proper exponential thinning regime is
never observed in the simulations. A significant further
increase in b will eventually lead to exponential thinning,
but lack of numerical resolution prevented us from explor-
ing this regime further. When the polymeric thread has
thinned to about 10 �m, it becomes yet again unstable to
form tertiary beads of corresponding size. At present there
is little understanding of this ‘‘blistering’’ [21,22] (too
small to be visible on the scale of Fig. 1). As long as the
polymers can still stretch, extensional viscosity will stabi-
lize the thread, so the blistering instability is likely asso-
ciated with the polymeric stress having reached saturation,
or failure of polymer strands.

It is also worth examining the subsequent evolution of
satellite beads, which can be quite varied. At least three of
the scenarios predicted previously by Li and Fontelos [10]
could be observed in our experiments: the disappearance of
a bead due to stretching; bead migration and fusion of
threads due to differences in the capillary pressure. Bead
stretching (between the dashed and solid lines in Fig. 2)
occurs if the bead is small and the pressure difference
between the bead and the surrounding filament is small.
Bead migration usually follows gravity, but smaller beads
may be driven upward by pressure forces (cf. Fig. 4), where
they fuse with the upper reservoir. Small beads also get
16450
sucked into larger ones [cf. Fig. 1(b)], because their inter-
nal pressure is higher.

In conclusion, we have measured and described the
formation of a secondary bead during the detachment of
a drop of viscoelastic liquid. The conditions for secondary
bead formation are well explained by comparing time
scales of the inviscid fluid motion with the time scale of
the polymer, furnishing a simple method to determine
model parameters relevant for large polymer deformations.
Our numerical simulations describe the drop formation
process in very favorable agreement with the experiments,
if the polymer time scale is adjusted. Disagreement be-
tween model parameters thus obtained and rheological
measurements highlight the significant challenges remain-
ing in the quest for simple and universal dynamical models
of polymeric fluids.
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