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Origin of Non-Gaussian Statistics in Hydrodynamic Turbulence
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Turbulent flows are notoriously difficult to describe and understand based on first principles. One
reason is that turbulence contains highly intermittent bursts of vorticity and strain rate with highly non-
Gaussian statistics. Quantitatively, intermittency is manifested in highly elongated tails in the probability
density functions of the velocity increments between pairs of points. A long-standing open issue has been
to predict the origins of intermittency and non-Gaussian statistics from the Navier-Stokes equations. Here
we derive, from the Navier-Stokes equations, a simple nonlinear dynamical system for the Lagrangian
evolution of longitudinal and transverse velocity increments. From this system we are able to show that
the ubiquitous non-Gaussian tails in turbulence have their origin in the inherent self-amplification of
longitudinal velocity increments, and cross amplification of the transverse velocity increments.
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Intermittency in turbulent flows refers to the violent and
extreme bursts of vorticity and rates of strain that occur
interspersed within regions of relatively quiet flow [1].
These infrequent, but extreme events are believed to cause
observed deviations from the classical Kolmogorov theory
of turbulence [2]. Intermittency also has a number of
practical consequences since it can lead to the sudden
emergence of strong vortices in geophysical flows [3], to
modifications of the local propagation speed of turbulent
flames [4], etc. One of the observable manifestations of
intermittency is the tendency of velocity increments, i.e.,
the difference between velocities at two spatial points
separated by a distance l, to display highly non-Gaussian
statistics when l is smaller than the flow integral scale, L.
The tails of velocity-increment probability density func-
tions (PDF) are observed to be exponential and even
stretched exponential [1,3]. Moreover, an inherent asym-
metry develops in the distribution of the longitudinal ve-
locity increments, i.e., the difference of the velocity
component in the direction of the displacement between
the two points. This asymmetry yields the well-known
negative skewness of longitudinal velocity increments
[1]. While the negativity of skewness can be derived
from the Navier-Stokes (NS) equations in isotropic turbu-
lence [1,2], a straightforward mechanistic explanation of
the origins of stretched exponential tails, intermittency, and
asymmetry has remained elusive.

In one dimension for the Burgers equation, the emer-
gence of negative skewness and long negative tail in the
PDF starting from random initial conditions is well under-
stood based on the tendency of the nonlinear term to
steepen the velocity gradient. In 3D turbulent flows, the
notion of nonlinear ‘‘self-amplification’’ as the cause of
intermittency has long been suspected [5]. Yet, these ex-
pectations have eluded quantitative analysis due to the
difficulty in deriving lower-dimensional models that main-
tain the relevant information about the vectorial nature of
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the full 3D dynamics. Many surrogate models have been
proposed, such as shell models [6], the mapping closure
[7,8], etc., but the connection with the original NS equa-
tions is typically based on qualitative and dimensional
resemblances instead of on systematic derivation.

We consider the coarse-grained NS equations filtered at
scale � comparable (and larger) than the scale l. Let �ui be
the filtered velocity field. Defining the velocity gradient
tensor �Aji � @ �ui=@xj and taking the gradient of the filtered
NS equations, one obtains [9,10] that the rate of change of
the velocity gradient is given by

_�A ji � �� �Ajk �Aki � 2Q=3�ji� �Hji; (1)

whereQ � � �Amn �Anm=2 arises from continuity. The tensor
Hji contains the trace-free part of the pressure Hessian,
subgrid, and viscous force gradients [11,12]: Hji �
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which �p is the filtered pressure divided by density and � the
viscosity. �ij � uiuj � �ui �uj is the subgrid-scale (SGS)
stress. The time derivative �_� is a Lagrangian material
derivative defined as the rate of change of the gradient
tensor following the local smoothed flow. Setting Hij � 0
yields the so-called ‘‘restricted Euler’’ dynamics [9,10]. A
fruitful method to model the effects ofHij has been to track
material deformations using either tetrad dynamics [13] or
the Cauchy-Green tensor [14]. Here we focus on a simpler
object—a line element, aiming at identifying the mecha-
nism generating intermittency. Thus, consider two points
separated by a displacement vector r of length smaller
than, or of the order of, � so that the local velocity field
is smooth enough to be approximated as a linear field. The
velocity increment between the two points over the dis-
placement r is then

�ui�r; t� � �ui�x� r� � �ui�x� � �Akirk: (2)

The longitudinal velocity increment, �u�r; t�, and the mag-
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nitude of the velocity increment, �v�r; t�, in the transverse
plane, can be evaluated from the two projections of Eq. (2)
(see Fig. 1):

�u�r; t� � �Akirk
ri
r
; �v�r; t� � jPij�r� �Akjrkj; (3)

where Pij�r� � �ij � rirj=r2 and r � jrj.
Note that �u�r; t� and �v�r; t� correspond to velocity

increments over a displacement ri�t� that is evolving, in a
local linear flow, according to equation _ri � �Amirm. To
study the evolution of velocity increments at a fixed scale
l, it is necessary to eliminate effects from the changing
distance between the two points. Consider a line that goes
through the two points. Still within the assumption of a
locally linear velocity field, the velocity increments across
a fixed distance l along this line are �u � �u�r; t�l=r,
�v � �v�r; t�l=r (see Fig. 1).

Taking time derivatives of �u and �v, and using the
expressions for _�Aji and _ri, many terms simplify and one
arrives at the following ‘‘advected delta-vee’’ system of
equations:

� _u � ��u2l�1 � �v2l�1 �
2

3
Ql� Y; (4)

� _v � �2�u�vl�1 � Z; (5)

where Y � lHijrirj=r
2 and Z � lHijejri=r contain the

anisotropic nonlocal effects of the pressure, interscale
effects of subgrid-scale stresses, and damping effects of
molecular viscosity (e is a unit vector in the direction of the
transverse velocity component). The first term on the right-
hand-side (rhs) of the equation for � _u also occurs in the 1D
Burgers equation (the self-amplification effect of negative
velocity gradients). The second term indicates that the
transverse velocity (rotation) tends to counteract the self-
amplification process. For � _v, the first term on the rhs of
Eq. (5) suggests exponential growth of �v at a rate pro-
FIG. 1. Illustrative sketch of velocity increment �ui�r� be-
tween two points x�t� and x�t� � r�t�, and the components of
�ui�r� longitudinal and transverse to the displacement vector r.
The quantities of interest are �u and �v, defined as the compo-
nents of the velocity increment over a fixed length l.
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portional to j�ujwhen �u < 0. This ‘‘cross-amplification’’
mechanism can lead to very large values of �v.

We now pose the question whether the growth of inter-
mittency and the asymmetry of longitudinal velocity incre-
ments can be understood based on this system of equations,
but without the effects represented by Y and Z (i.e., the
restricted Euler dynamics). In order to determine whether
this simplified system approximates � _u and � _v in real
turbulence, comparisons are made with direct numerical
simulations (DNS). The rates of change of �u and �v
predicted by DNS are obtained by the finite difference in
time from two DNS velocity fields separated by the simu-
lation time step �t � 0:001. The data are obtained from a
pseudospectral simulation of the NS equations, with 2563

nodes and Taylor-scale Reynolds number R� � 162. The
velocity fields are coarse grained using a Gaussian filter of
characteristic length � � 40�, where� is the Kolmogorov
length scale, yielding filtered velocity fields �ui�x; t0� and
�ui�x; t0 � �t� (i � 1; 2; 3). At the initial time t0, to every
grid-point x�t0� on the computational mesh, we associate a
partner x�t0� � r�t0� at a distance jr�t0�j � l � 40� in
some Cartesian direction. For each pair of points we mea-
sure the longitudinal and transverse velocity increments.
Then, we find the position to which x�t0� and x�t0� � r�t0�
will be advected by the smoothed velocity field, which are,
using the simple Euler integration, x�t0 � �t� � x�t0� �
�u�x; t0��t, and x�t0 � �t� � r�t0 � �t�, where r�t0 �
�t� � r�t0� � � �u�x�t0� � r�t0�; t0�� �u�x�t0�; t0�	�t is the
new displacement vector. The final end point at a fixed
distance l is found by moving the material end point x�t0 �
�t� � r�t0 � �t� along the new displacement vector to the
point x�t0 � �t� � r�t0 � �t�l=jr�t0 � �t�j, so that the dis-
tance is kept fixed. Velocities at the new locations are
obtained from the stored field at the new time using bi-
linear interpolation, and the longitudinal and transverse
components are evaluated, by projections onto directions
parallel and perpendicular to the new displacement vector
between the two points. The rate of change of �u and �v is
evaluated using first-order finite differencing in time.
FIG. 2. Joint PDF of rates of change of velocity increments
predicted from DNS (filtered at � � 40� and taking increments
over a distance l � 40�) and the advected delta-vee system.
(a) longitudinal and (b) transverse velocity increments. Results
are robust with changes in � and l (with l 
 �).
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Conversely, the rates of change predicted by the model
system are evaluated as ��u2=l� �v2=l� �2=3�Ql and
�2�u�v=l from the measured values of �u, �v, and Q.
Both real and modeled rates of change are computed over a
large number of points in the DNS data, and their correla-
tion coefficient and joint PDF are evaluated.

Figure 2 shows the joint PDF of the model results versus
the rates of change measured from DNS. A clear correla-
tion can be seen between the model and DNS results.
Correlation coefficients are 0.54 for the longitudinal
and 0.61 for the transverse velocity increments, indicating
that the model system captures important (but clearly not
all) effects seen in the real dynamics. The deviations
between the model system and DNS are caused by the
neglected Y and Z terms, to be studied in future work.

After confirming that the simplified system captures
important trends in 3D fluid turbulence, we explore the
trends predicted by solutions of the model system. In the
present Letter we set Q to a constant Q0 (numerical tests
show that allowing Q to evolve in time leads to the same
short-time behavior to be displayed below, except if Q
were to be closely correlated with �u and �v; this is not
the case in 3D turbulence, since Q depends on velocity
gradients along two additional directions [15]). We note
that for Q � 0, the system describes the relative motion of
a fluid (with a locally linear velocity field) consisting of
noninteracting (‘‘ballistic’’) particles that maintain their
initial velocity. For Q � 0, the particles are subjected to
a relative force equal to the spherical average of the pres-
sure, interscale, and viscous damping forces. For the case
Q0 � 0 the analytical solution is

�u�t� � le0�e0t� �u0l	=f�e0t� �u0l	2 � �v2
0l

2g; (6)

�v�t� � l2�v0e0=f�e0t� �u0l	
2 � �v2

0l
2g; (7)

where e0 � �u2
0 � �v

2
0. For discrete values of time, this

defines a mapping (the advected delta-vee map). The sys-
tem has an invariant

U0 � ��u
2 � �v2�=�v; (8)
δu

δv

-6

-6

-4

-4

-2

-2

0

0

2

2

4

4

6

6

0 0

2 2

4 4

6 6

FIG. 3. Phase-space portrait of the advected delta-vee dynami-
cal system � _u � ��u2 � �v2, � _v � �2�u�v (for Q0 � 0 and
l � 1).
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and its (circular) phase-space trajectories are �u2 � ��v�
U0=2�2 � �U0=2�2, as shown in Fig. 3.

In order to illustrate the evolution of �u�t� and �v�t�, we
start from an ensemble of randomly oriented lines for
which the velocity-increment vectors are initialized from
a Gaussian distribution. The increments �u�t� and �v�t�
over these lines are evaluated at several later times. To
compare with the experimental data, two issues need to be
considered. First, since �v�t� is the magnitude of the
transverse velocity-increment vector, it has to be projected
onto a coordinate direction to obtain a component of the
transverse increment, �vc � �v cos�. For isotropic turbu-
lence, the angle � between the vector and a fixed direction
in the transverse plane is uniformly distributed in �0; 2��.
Therefore, the PDF Pcv��vc� of �vc is related to that of �v,
Pv��v�, by

Pcv��vc� �
1

�

Z �1
j�vcj

Pv��v�
d�v�����������������������

�v2 � �v2
c

p : (9)

Second, an ensemble of randomly oriented lines (with
uniform measure on a sphere, i.e., a uniform distribution
of initial solid angles d�0) will tend to concentrate along
directions of positive elongation. Thus, in order to compare
model results at later times with data that are taken at
random directions not correlated with the dynamics, the
model results need to be weighted with the evolving solid
angle measure. Conservation of fluid volume implies that
l3d�0 � r�t�3d��t�, i.e., in directions of growing r�t�, the
solid angle d��t� decreases. Thus, probabilities must be
weighted by

d��t�=d�0 � �l=r�t�	
3: (10)

Since _r � �ur=l, we can solve for r�t� and then obtain
d��t�=d�0 � exp�� 3l�1

R
t
0 �u�t

0�dt0�. Using the solu-
tion for �u, we obtain d��t�=d�0 � l3��l� �u0t�

2 �

�v2
0t

2	�3=2 for Q0 � 0. This factor is used to weight the
measured time-evolving PDFs from the model system.
Note that when �v0 ! 0 and �u0 < 0, there is an unphys-
ical finite time singularity at t! l=j�u0j, when r! 0.

Figure 4 shows the evolution of the PDFs of the longi-
tudinal and transverse velocity increments (both the mag-
nitude and a component), as time progresses (for the case
Q0 � 0). It is immediately clear that the two main quali-
tative trends observed in turbulence naturally evolve from
the solution of the system: the skewness towards negative
values of the longitudinal velocity increment, and the
noticeable flare up of long tails in the PDFs of the trans-
verse velocity increment. Also, these features appear rather
quickly: after a nondimensional time t=� � 0:18 the PDF
is already highly skewed and displays stretched exponen-
tial tails. Very similar results are observed for nonzero
values of Q0 (using numerical forward time integration
with a standard fourth order Runge-Kutta routine, we
tested Q0 � �2): Relative to the results for Q0 � 0, the
PDFs of �u are shifted to the left for Q0 > 0 and to the
2-3



FIG. 4. Evolution of the PDF of velocity increments in time:
(a) longitudinal velocity increment, (b) the magnitude, and (c) a
component of the transverse velocity-increment vector. �u is
initialized as a standard Gaussian random number and �v as the
square root of the sum of the square of two independent
Gaussian random numbers. (c) is calculated from (b) by numeri-
cal integration of Eq. (9). For simplicity, we set l � 1, so that the
characteristic time scale of the ensemble is � � l=�u0jrms � 1.
Dotted line in (a) and (c): Gaussian, solid line: t � 0:03, dashed
line: t � 0:06, dash-dotted line: t � 0:09, dash-double-dotted
line: t � 0:12, long-dashed line: t � 0:15, long-dash-dotted
line: t � 0:18, and thin line with squares in (c): t � 0:18 without
correcting for the evolving measure.
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right for Q0 < 0, and only very minor differences are seen
for �v. The rapid appearance of stretched exponential tails
is due to the divergence of the phase-space trajectories on
the left half of the plane in Fig. 3. For a given initial kinetic
energy �u2

0 � �v
2
0, if �v0 is small, the invariant U0 can be

arbitrarily large. Thus �u and �v can later grow to very
large values during the evolution.

In summary, the model system proves useful in showing
that the emergence of ubiquitous trends of 3D turbulence,
namely, intermittent and asymmetric tails in PDFs of ve-
locity increments, occur even in the ballistic case (Q0 �
0). Considering all possible random initial directions of
16450
relative motion, the fraction of particle pairs that initially
move towards each other is small, thus large gradients in
small spatial regions occur rather infrequently but are very
intense when they occur due to the self-amplification
mechanism for �u, and the cross-amplification mechanism
for �v. While the model system thus helps explain the
origin and trends towards intermittency in 3D turbulence,
predicting quantitatively the level of intermittency remains
an open question. It requires understanding the effects of
pressure, interscale interactions (that depend on interac-
tions of vorticity and strains at various scales, see, e.g.,
[16,17]), and viscosity that are neglected in the model
system. But already, the proposed model system could be
combined with cascade, mapping closure, or shell models
to enable these heuristic approaches to include a more
direct link to the underlying Navier-Stokes equations.
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