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Non-Markovian Dynamics in a Dense Potassium Vapor
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Transient four-wave mixing experiments on a dense potassium vapor, which has a dephasing time long
compared to the collision duration, reveal distinct signatures of non-Markovian dynamics. Theoretical fits
assuming stochastic fluctuation of the excited-state frequencies confirm that the two-time correlation
function has a finite temporal width.
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In broadening of resonances, the non-Markovian regime
corresponds to time scales when phase memory during
interactions must be taken into account. The issue of
non-Markovian dynamics appears in the general problem
of quantum dissipative systems, and thus arises in many
fields [1]. The transition from non-Markovian to
Markovian dynamics is determined by the correlation
time. For times less than the correlation time, non-
Markovian dynamics lead to nonexponential decoherence
[2]. However, if the dephasing time is comparable to the
correlation time, the transition from non-Markovian to
Markovian dynamics is not distinct, preventing compari-
son between the two regimes. This is often the case in
molecular liquids, which also suffer from limitations due to
the temporal resolution of the experiments [3–5]. This is
not the case for a dense atomic vapor, in which phase-
interrupting interactions can be ascribed to collisions be-
tween atoms and the correlation time is the collision dura-
tion. Resonant interactions between like atoms result in
extended collision durations, and the dephasing time for an
atomic vapor is longer than the collision duration. The
combination of these important qualities leads to experi-
mentally accessible regimes of non-Markovian and
Markovian atomic interaction. We study the phase relaxa-
tion dynamics of a dense potassium vapor using the two-
pulse photon echo technique, also known as transient four-
wave mixing (TFWM) [6]. The TFWM signal exhibits
signatures characteristic of both Markovian and non-
Markovian dynamics, which can be modeled assuming
stochastic modulations of the transition frequency of the
atoms during collisions [7]. Since the signatures of non-
Markovian dynamics appear at short time scales, a time-
domain technique, such as TFWM, is preferred because it
is most sensitive to the fastest dynamics. In contrast, non-
Markovian dynamics appear in the wings of the spectral
line shape, where the signal is weak and may be influenced
by other resonances, which hinders frequency domain in-
vestigations [8]. Studying such a model system allows us to
improve the understanding of more complex systems to
which the stochastic model is applied. The interactions in
such systems are commonly studied using the three-pulse
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photon echo peak shift technique, which can map the
correlation function of frequency fluctuations directly [9],
as was done recently, for example, to investigate hydrogen
bond dynamics via the OH-stretching frequency in water
[10,11]. The stochastic model does not take into account
memory in the bath, as occurs, for example, in semicon-
ductors due to electron-LO-phonon scattering [12]. The
effects of memory in the bath can be described in a micro-
scopic model and result in oscillatory dephasing [13,14].

The clear transition from non-Markovian to Markovian
dynamics in an atomic vapor results from a distinct sepa-
ration of time scales. At very short times the motion of the
atoms can be neglected; thus, the ensemble can be consid-
ered inhomogeneously broadened due to dipole-dipole
interactions over the varying interatomic distances. At
intermediate times comparable to the collision duration
between atoms, the relaxation dynamics are dominated
by the perturbations of the transition frequency of the
atoms as they collide. The collision can be thought of as
the transient formation of a dimer, here K2, where the
transition frequencies are modified according to the poten-
tial energy surfaces at small internuclear spacings [15].
Thus the collision duration is determined by the velocity of
the atoms and the range of the interatomic potential. These
early time scales represent the regime of non-Markovian
dynamics. On time scales much greater than the collision
duration, the system is homogeneously broadened due to
atomic motion, i.e., the atoms can be considered to traverse
the attractive range of the internuclear potential infinitely
fast. These time scales correspond to the Markovian
regime.

The major broadening mechanisms in an atomic vapor
with no buffer gas are Doppler broadening and resonance
broadening, where resonance broadening is due to dipole-
dipole interactions between excited and unexcited atoms of
the same species (also known as self-broadening). We
choose densities (N * 1017 cm�3) such that resonance
broadening dominates and Doppler broadening can be
neglected. At these densities, collisions are no longer
strictly binary [16]. In addition, in the case of resonance
broadening it has been shown that many-body effects are
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important even at low densities because of the long-range
nature of the resonant interaction [17]. Because of these
difficulties, the effect of resonance broadening on the line
shape is still an open question [18]. Nonlinear optical time-
domain techniques prove useful because they are able to
separate broadening mechanisms in time. The correspond-
ing theory of the nonlinear response must span both in-
homogeneous and homogeneous temporal regimes, which
is accomplished by allowing the transition frequency of the
atoms to be modulated during collisions according to an
assumed two-time correlation function of frequency fluc-
tuations [7].

In self-diffracted TFWM, two pulses with wave vectors
k1 and k2 interact nonlinearly in a sample, resulting in a
background-free signal in direction 2k2 � k1, which is
time integrated by a detector. The loss of coherence of
the system is probed by varying the delay between the
pulses. In the experimental setup, shown in Fig. 1(a), pure
potassium vapor, with no buffer gas, is contained in a cell
made from corrosion-resistant titanium with a sapphire
window for optical access. To keep the potassium from
condensing onto the sapphire window, higher temperature
is maintained at the window than at the back of the cell.
The temperatures are varied from 500 �C to 750 �C, cor-
responding to number densities from 3� 1017 cm�3 to
6� 1018 cm�3 [19]. Pulses 70 fs long are focused onto
the interface between the sapphire window and the potas-
sium vapor. ATFWM signal also occurs in reflection for an
optically thin sample [20]. We detect this reflected signal
because the absorption length of the potassium vapor is on
the order of the wavelength of the incident light at these
densities, and thus it is effectively thin, which minimizes
reshaping of the excitation pulses and reabsorption of the
signal. The broad laser spectrum excites both the potas-
sium D1 and D2 lines, which are well separated, resulting
FIG. 1. (a) Transient four-wave mixing experiment setup and
the optically active energy levels of potassium. The experiment
is performed in reflection due to the short absorption length of
the potassium vapor. (b) The relevant double-sided Feynman
diagrams; with m; n � 2; 3; m � n.
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in quantum beats at the difference frequency. This is in
contrast to molecular vibronic spectra, which often contain
multiple, overlapping transitions [5]. In this experiment the
dephasing time, collision duration, and pulse width are all
well separated; at 700 �C, the collision duration is approxi-
mately 0.5 ps, which is much less than the time between
collisions of 2 ps and greater than the pulse duration of
70 fs. This results in unusually well-separated contribu-
tions from homogeneous and inhomogeneous broadening
as compared to molecules in the condensed phase. We also
note that we do not need to be concerned with contribu-
tions from other time orderings that occur during pulse
overlap.

The TFWM signal contains signatures of both non-
Markovian and Markovian dynamics. In the Markovian,
or long-time, limit, the perturbations of the resonance
frequency can be considered as delta functions in time
and the system homogeneously broadened. The corre-
sponding TFWM signal decays exponentially due to the
collisions between atoms. In the non-Markovian, or short-
time, limit, the collisions are considered to occur in a finite
time and the two-time correlation function of the excited-
state frequency fluctuations determines the evolution of the
signal. This corresponds to a constant TFWM signal at
small delays, representing the finite time needed for colli-
sions to occur. In reality there is a rise of the signal from
zero delay due to the integration up to the full area of the
real-time signal (a photon echo) [21]. Thus in the TFWM
signal the dynamical signatures are well separated (see
Fig. 2) as an initial rise of the signal caused by the inte-
gration of the photon echo, a flat signal at short delays due
to non-Markovian scattering, and exponential dephasing
due to pure homogeneous broadening. The extra dip near
zero delay results from the signal following the integration
of the pulse, which has a finite duration.

The TFWM signal can be calculated more rigorously for
our system using a stochastic model for the dipole-dipole
interaction between atoms [2,7,22]. Indeed, the well-
defined signatures outlined above provide an important
opportunity to test this theoretical description of dephas-
ing, which is frequently employed in molecular systems
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FIG. 2. Experimental TFWM signal for potassium vapor at
500 �C (number density � 1017 cm�3) with dynamical signa-
tures labeled. Quantum beats are due to the excitation of both the
potassium D resonance lines.
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FIG. 3. Typical experimental TFWM signal (solid gray lines)
for potassium vapor at 500 �C (N � 3:4� 1017 cm�3), 600 �C
(N � 1:3� 1018 cm�3), and 700 �C (N � 3:7� 1018 cm�3),
with curves offset for clarity. The dashed lines are least-squares
fits assuming a stochastic modulation of the electronic transition
frequency during collisions.
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[5]. Calculating the optical response in the non-Markovian
regime requires a modification of the optical Bloch theory,
which allows for only phenomenological exponential de-
phasing terms. This is done by assuming a stochastic
modulation of the resonance frequency during a collision.
Thus the modulation of the i to j transition, �!ij, is
assumed to obey the two-time correlation function

h�!ij�t1��!ij�t2�i � �2
ij exp���ijjt2 � t1j� (1)

and h�!ij�t�i � 0, where �ij corresponds to the root-
mean-squared amplitude of the frequency fluctuation and
�ij is its inverse correlation time. The angle brackets
denote an ensemble average over the stochastic process.
In this manner we account for the modulation of the
transition frequency in both inhomogeneous and homoge-
neous regimes; however, this model does not include the
effects of resonance broadening nor do we consider fluc-
tuations in the dipole moment. Using this model, the
TFWM signal can be calculated via the polarization:

S��� �
Z 1
�1
jP�3��t; ��j2dt; (2)

where the polarization is determined by convolution of the
response function of the system with the incident fields. We
consider a system of three-level atoms [see level diagram
in Fig. 1(a)]. The nonlinear response functions are calcu-
lated using a cumulant expansion [2], resulting in a depen-
dence on the two-time correlation function of Eq. (1) via
the line shape function

gij�t� �
Z t

0
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0
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2�2

ij

�2
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�exp���ijt� 	�ijt� 1
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The response functions for the two possible interaction
pathways corresponding to 2- and 3-level physics [see
Fig. 1(b)] within the assumption that the pulses can be
represented as delta functions in time are
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where �ij is the dipole moment of the i to j transition. In
the notation of the R’s the first superscript represents 2- or
3-level physics. For 2-level physics, the subscript repre-
sents an excited-state (2) or ground-state (3) population to
second order. For 3-level physics, the subscript represents a
Raman coherence (2) or ground-state population (3) to
second order. The second superscript is the final excited
state that forms a coherence with the ground state at third
order. The sum of the response functions gives the polar-
ization in Eq. (2) that is then numerically integrated to
obtain the TFWM signal.

Theoretical results match quite well with the experimen-
tal results via least-squares fits, as shown in Fig. 3. The
discrepancy near zero delay is due to the assumption of
delta-function pulses in time, which does not allow for
finite pulse width effects. One of the fit parameters, �ij,
corresponds to the decay rate of the correlation function
and determines the time scale of the deviation of the
TFWM signal from exponential behavior at short delays.
To confirm these signatures data were taken as a function
of temperature, and as expected �ij increases with increas-
ing temperature, as shown in Fig. 4(a). This represents a
decreasing collision duration. The magnitude of the
excited-state frequency fluctuations is represented by the
parameter �ij, which is also plotted in Fig. 4. The ratio � �
�ij=�ij is of order 1, which means that the broadening
mechanism is intermediate and not in either the homoge-
neous or inhomogeneous limits. The excellent fit between
theory and experiment demonstrate that the stochastic
model adequately describes the dynamics. Thus a model
that includes a microscopic description of the bath [13,14]
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FIG. 4. Theoretical fitting parameters �ij, the time scale of the
excited-state frequency fluctuations, and �ij, their magnitude,
for the D1 (square) and D2 (triangle) lines.
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is not needed, which is consistent with the fact that we do
not see oscillatory dephasing. The stochastic model does
not include resonance broadening effects; thus, differences
will exist in comparison with a foreign-gas broadened
vapor in which the interaction range and therefore the
collision duration is relatively small. The deviation of the
inverse collision duration from square-root dependence on
temperature may indicate the importance of many-body
(nonbinary) interactions. This can be explored experimen-
tally by introducing a buffer gas to the potassium vapor,
which would decrease the interaction range and bring the
system to the Markovian, homogeneously broadened limit.
In doing this we anticipate the ability to determine signa-
tures unique to resonance broadening. In addition, further
insight can be gained with a three-pulse echo peak shift
experiment, which would enable the mapping out of the
correlation function of the system [9,23,24].

In summary, we have explored with transient four-wave
mixing the non-Markovian dynamics of a dense potassium
vapor, which has the unusual quality of a long dephasing
time compared to the collision duration. This clear sepa-
ration of dynamics has provided an opportunity to compare
theory and experiment in a system for which it may be
possible to calculate the correlation function of transition
frequency fluctuations, representative of the complete dy-
namics of the system, from first principles, which, to the
best of our knowledge, has not been done. With further
experiments using the echo peak shift technique and the
introduction of a buffer gas we anticipate greater insight
into resonance broadening effects and the ability to deter-
mine the correlation function of the system.
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