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Trajectory Surface Hopping in the Time-Dependent Kohn-Sham Approach
for Electron-Nuclear Dynamics
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The mean-field treatment of electron-nuclear interaction results in many qualitative breakdowns in the
time-dependent Kohn-Sham (TDKS) density functional theory. Examples include current-induced heating
in nanoelectronics, charge dynamics in quantum dots and carbon nanotubes, and relaxation of biological
chromophores. The problem is resolved by the trajectory surface-hopping TDKS approach, which is
illustrated by the photoinduced electron injection from a molecular chromophore into TiO2, and the
excited-state relaxation of the green fluorescent protein chromophore.
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Density functional theory (DFT) is a versatile and com-
putationally efficient tool for investigation of molecular
and solid state structures, reaction pathways, thermochem-
istry, dipole moments, spectroscopic response, and many
other properties [1,2]. Recent advancements in DFT have
focussed on time-dependent (TD) phenomena. Developed
as an extension of the Hohenberg-Kohn-Sham theory [3]
for arbitrary TD systems by Runge and Gross [4], TDDFT
allows for the description of excited-state properties and
spectra, as well as the development of novel nonadiabatic
(NA) functionals and ab initio studies of NA molecular
dynamics in real time [2]. Although a fully quantum
TDDFT for electronic and nuclear motion has been pro-
posed and applied to simple systems [5], the majority of
TDDFT applications treat nuclei classically [1,2,6–10].
Modeling the interaction between the quantum and classi-
cal subsystems—the so-called ‘‘quantum-backreaction’’
problem—has been the subject of active discussions
[11–16].

The quantum-classical mean-field or Ehrenfest method
is the most common scheme for treating backreaction
and has been extensively analyzed. It is known to fail in
numerous situations, such as molecular and atomic scat-
tering, nonradiative electron-nuclear relaxation, and
current-induced heating in molecular electronics [17–19].
Electron-nuclear correlations and state-specific nuclear
dynamics, necessary to accurately describe such processes,
are impossible to model in a mean-field regime. Several
alternatives to Ehrenfest dynamics have been suggested
[13–17,19,20]. The fewest-switches surface-hopping
(FSSH) method [17] is one of the most popular approaches,
since it captures the essential physics—including detailed
balance [17(c)]—while remaining computationally
simple.

The current Letter develops FSSH for DFT with the
Kohn-Sham (KS) representation of the electron density,
greatly expanding the range of TDDFT applications. The
FSSH-TDKS approach is ideal for extending the descrip-
tion of quantum dots and carbon nanotubes from time-
independent geometric and electronic structure studies
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[21,22] to real-time modeling of experimentally observed
photoexcitation dynamics [23,24]. The Ehrenfest-TDKS
dynamics cannot accurately describe such phenomena,
since it excludes electron-nuclear correlations and does
not satisfy detailed balance [17–19]. The recently devel-
oped restricted open-shell KS theory [10], while well
suited for low-lying excited states, would be difficult to
apply to these systems since they involve many states and
high-energy excitations. FSSH-TDKS is illustrated below
with two examples: the photoinduced electron injection
from a molecular chromophore into a TiO2 surface
[25,26] and the nonradiative relaxation of the green fluo-
rescent protein (GFP) chromophore [9,27–29]. Compared
to traditional TDKS, FSSH-TDKS predicts a different
electron injection mechanism in the TiO2 system and a
much faster GFP relaxation, agreeing with experiment
[25,29].

The electron density in the KS representation of DFT
[3(b)] is written as ��x; t� �

PNe
p�1 j’p�x; t�j

2, where Ne is
the number of electrons and the ’p�x; t� are single-electron
KS orbitals. The evolution of the ’p�x; t� is determined by
application of the TD variational principle to the KS
energy:

Ef’pg �
XNe
p�1

h’pjKj’pi �
XNe
p�1

h’pjVj’pi �
e2

2

�
ZZ ��x0; t���x; t�

jx� x0j
d3xd3x0 � Excf�g: (1)

The right-hand side of Eq. (1) gives the kinetic energy of
noninteracting electrons, the electron-nuclear attraction,
the Coulomb repulsion of density ��x; t�, and the
exchange-correlation energy functional that accounts for
the residual many-body interactions. Application of the
variational principle leads to a system of single-particle
equations [1,2,6–9]:

i@
@’p�x; t�

@t
�H�’�x; t��’p�x; t�; p� 1; . . . ;Ne; (2)

where the Hamiltonian H depends on the KS orbitals.
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These equations are solved explicitly, in contrast to the
perturbative linear-response TDDFT used to obtain the
electronic excitation energies [2]. Within the local density
approximation [3(b)], the exchange-correlation energy de-
pends on density, Exc �

R
�����dx3.

In the generalized gradient approximation Exc depends
on both density and its gradient, and the Hamiltonian is
written as

H � �
@

2

2me
r2 � VN�x� � e

2
Z ��x0�
jx� x0j

d3x0

� Vxcf�;r�g: (3)

In the HF approximation Vxc is orbital dependent.
The KS energy (1) may be expressed as E �
h’a’b � � �’pjHj’a’b � � �’pi, the expectation value of
the Hamiltonian in the basis of Slater determinants (SD)
formed with TD KS orbitals [3(b)]. The single-electron
density is obtained from the many-electron SD density
matrix by the trace over Ne � 1 electrons.

��x1; t� � Ne Trx2;...;xNe
j’a�x1; t�’b�x2; t� � � �

� ’p�xNe ; t�ih’a�x1; t�’b�x2; t� � � �’p�xNe ; t�j:

(4)

The time-dependence in TDDFT for electron-nuclear
dynamics is due to ionic motion; thus VN�x� �
VN�x; R�t�� depends on time through the nuclear trajectory
R�t�. The additional time dependence of the electron den-
sity due to an external electric field such as a laser excita-
tion or an electric current is not considered here, but can be
added if necessary [6]. The prescription for R�t� consti-
tutes the quantum-backreaction problem.

The mean-field or Ehrenfest approximation follows
when the classical variables couple to the expectation
value of the quantum force operator [18] M �R �
�h’a’b � � �’pjrRHj’a’b � � �’pi. The gradient rR is
applied directly to the Hamiltonian according to the TD
Hellmann-Feynman theorem [18]. The Ehrenfest method
requires modification when electron-nuclear correlations
and detailed balance must be taken into account [17–19].
Inclusion of ‘‘quantum fluctuation variables’’ in the mean-
field formalism alleviates some problems [19,20], but a
more radical improvement is provided by the trajectory SH
schemes [14,15,17,18], in which the nuclear trajectory
R�t� responds to electronic forces by stochastically ‘‘hop-
ping’’ between electronic states. The fewest-switches
scheme employed here is designed to minimize the number
of hops.

Analytical and numerical arguments have indicated
that FSSH should be performed in the adiabatic represen-
tation, in which the electronic states that define the quan-
tum force are the electronic eigenstates for the current
nuclear configuration [14,17,18]. The single-electron
adiabatic KS orbitals and the many-electron SDs formed
from these orbitals are the eigenstates of the KS
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Hamiltonian (3). Expanding the time-dependent ’p�x; t�
in the adiabatic KS orbitals ~’k�x;R�, we obtain ’p�x; t� �PNe
k cpk�t�j ~’k�x;R�i, and the TDKS Eq. (2) transforms to

an equation in the coefficients

i@
@
@t
cpk�t� �

XNe
m

cpm�t���m�km � dkm � _R�: (5)

The NA coupling

d km � _R � �i@h~’k�x;R�jrRj ~’m�x;R�i � _R

� �i@h~’kj
@
@t
j ~’mi (6)

arises from the dependence of the adiabatic KS orbitals on
the nuclear trajectory. Similarly, the time-evolving SD
j’a’b � � �’pi evolves into a superposition of adiabatic
SDs,

j’a’b � � �’pi �
XNe

j�k�����l

Cj���l�t�j~’j ~’k � � � ~’li; (7)

with the many-electron coefficients Cj���l�t� �
caj�t�cbk�t� � � � cpl�t� expressed in terms of the single-
electron coefficients. The evolution of Cj���l follows from
Eq. (5):

i@
@
@t

Cq���v�t� �
XNe
a���p

Ca���p�t�	Eq���v�aq � � ��pv

�Da���p;q���r � _R
: (8)

Eq���v � h~’q � � � ~’vjHj ~’q � � � ~’vi is the many-electron
eigenenergy, and the many-electron NA coupling

D a���p;q���r � _R � �i@h~’a ~’b � � � ~’pj
@
@t
j ~’q ~’r � � � ~’vi

(9)

is nonzero only if the determinants are different in a single
KS orbital.

The FSSH algorithm is described in detail in
Ref. [17(a)]. As in the Ehrenfest-TDKS approach, the
electronic system is initially described by a single SD
that evolves into a superposition of the adiabatic SDs
[Eq. (7)]. Between hops, the nuclear trajectory propagates
adiabatically,M �R � �h~’a ~’b � � � ~’pjrRHj ~’a ~’b � � � ~’pi,
rather than in the mean field as before. The probability that
the nuclear trajectory hops to another adiabatic state during
time interval dt is

dPa���p;q���r �
Ba���p;q���r

Aa���p;a���p
dt; (10)

where

Ba���p;q���r � �2 Re�A�a���p;q���rDa���p;q���r � _R�;

Aa���p;q���r � Ca���pC
�
q���r:

(11)
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If the calculated dPa���p;q���r is negative, the hopping proba-
bility is set to zero. This feature of the FSSH approach
minimizes the number of hops: a hop from state a � � �p to
state q � � � r can occur only when the electronic occupation
of state a � � �p decreases and the occupation of state
q � � � r increases. After the hop, the nuclear trajectory
continues adiabatically in the new state q � � � r. To con-
serve the total electron-nuclear energy after a hop, the
nuclear velocities are rescaled [17(a),17(b)] along the di-
rection of the electronic component of the NA coupling
Da���p;q���r. If a NA transition to a higher-energy electronic
state is predicted by Eq. (10), and the kinetic energy
available in the nuclear coordinates along the direction of
the NA coupling is insufficient to accommodate the in-
crease in the electronic energy, the hop is rejected. The
velocity rescaling and hop rejection result in a detailed
balance between upward and downward transitions [17(c)].

We have implemented FSSH-TDKS with the VASP pack-
age [30] and have applied it to the nonradiative relaxation
of the GFP chromophore and the photoinduced electron
injection from the alizarin chromophore into a TiO2 sur-
face. The simulations were performed with the exchange-
correlation functional in the generalized gradient approxi-
mation due to Perdew and Wang [31] and a converged
plane-wave basis. A 1 fs nuclear and a 10�3 fs electronic
time step were used. The data shown in the figures were
converged by averaging over ensembles of initial condi-
tions representing the photoexcitations at room tempera-
ture. Additional simulation details will be reported
elsewhere. The FSSH results are compared with the tradi-
tional Ehrenfest-TDKS theory.

The naturally occurring GFP protects the chromophore
[Fig. 1] that emits green light. The solvated chromophore is
nonradiatively quenched in less than 1 ps and does not
fluoresce [29]. The mechanism of the fluorescence quench-
ing is under active investigation [9,27–29]. Ehrenfest-
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FIG. 1. Ground state recovery in neutral GFP chromophore
calculated by FSSH-TDKS (crosses) and traditional Ehrenfest-
TDKS (circles). The FSSH-TDKS results are well described by a
Gaussian plus an exponential. (See text for details.)
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TDKS greatly underestimates the quenching rate, while
FSSH-TDKS gives good agreement with experiment [29].
FSSH-TDKS is able to describe the state-specific electron-
nuclear dynamics that involves correlated nuclear motions
on the excited and ground electronic states, followed by
rapid dissipation of energy deposited along the NA cou-
pling vector into other vibrational modes.

The photoinduced electron injection from alizarin into
TiO2 is the primary step of the photovoltaic Grätzel cell
[26] and has been shown experimentally [25] to occur on a
sub-10 fs time scale. The mechanism of the injection is a
subject of debate, since the adiabatic and NA mechanisms
have different implications for solar cell design and are
described with different analytic theories [32]. Both
Ehrenfest-TDKS and FSSH-TDKS reproduce the sub-
10 fs adiabatic injection time [Fig. 2]. The NA mechanism
differs in the two models, facilitating injection in the tradi-
tional model and creating a back transfer in FSSH-TDKS.
The back transfer is a consequence of detailed balance and
is the major mechanism that decreases solar cell efficiency
[25,26,32].

FSSH is one of many alternatives [13–20] to Ehrenfest
dynamics. One of the most popular approaches due to its
simplicity and accuracy, FSSH nevertheless has several
drawbacks, including the so-called frustrated hopping re-
FIG. 2 (color online). (a) Simulation cell for the alizarin-TiO2

system. (b)–(c) Electron transfer in alizarin-TiO2 calculated by
traditional Ehrenfest-TDKS (b) and FSSH-TDDFT (c).
Nonadiabatic, adiabatic, and total electron transfer profiles are
shown for each method. All fits are single exponential. The
nonadiabatic data in (c) were fit with a first-order Taylor expan-
sion of the exponential for the first 30 fs to model the short-time
behavior. (See text for details.)
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lated to quantum tunneling [33,34] and improper treatment
of the electronic state decoherence [15,34,35]. Remedies to
these and other problems have been proposed, and the
reader is referred to the extensive literature on quantum-
classical and semiclassical dynamics, including, but by no
means limited to, the references cited here [11–20,33–35].

In summary, we have reported an improved version of
TDDFT for electron-nuclear dynamics that explicitly in-
cludes electron-nuclear correlations and satisfies detailed
balance. The method has been applied to the nonradiative
relaxation of the GFP chromophore and solar cell electron
transfer. In agreement with experiment, FSSH-TDKS cap-
tures the essential physics that traditional TDKS misses in
both cases. This new approach greatly extends the utility of
TDDFT for electron-nuclear dynamics.
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