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Nonextensive Boltzmann Equation and Hadronization
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We present a novel nonextensive generalization of the Boltzmann equation. We investigate the
evolution of the one-particle distribution in this framework. The stationary solution is exponential in a
nonlinear function of the original energy. The total energy is composed using a general, associative
nonextensive rule. We propose that for describing the hadronization of quark matter such rules may apply.
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There is a lot of experimental evidence on power-law
tailed statistical distributions of single-particle energy, mo-
menta, or velocity. In particular, hadron transverse momen-
tum spectra at central rapidity, which stem from
elementary particle and heavy ion collisions, can be well
fitted by a formula reflecting m; scaling [1-8]: f(pr) ~
(1 + my/E,)"". Interpreting these spectra as a distribution
in the transverse directions at zero rapidity, the single-
particle energy is given by E = mp = ,/p2 + m? for a
relativistic particle with mass m. Amazingly, this formula
describes exactly the Tsallis distribution f(E), which was
obtained by using theoretical arguments of thermodynam-
ical nature [9]. Distributions with a power-law-like tail, in
particular, the Tsallis distribution, can be seen in many
areas where statistical models apply [10—18]. It was inves-
tigated as a generic feature in the framework of nonexten-
sive thermodynamics [19-21]. Tsallis has suggested an
expression for the entropy, also encountered earlier by
others [9,22], which is a generalization of the Boltzmann
formula. From this, with a canonical constraint on the total
energy, the power-law tailed distribution can be derived.
Without being able to exclude a nonequilibrium interpre-
tation of the power-law tail, it is tempting to investigate the
possibility that some nonexponential spectra would be a
result of a particular form of (meta)equilibrium, featuring
characteristics of a nonextensive thermodynamics.

In this Letter we propose a possible way to understand
power-law tailed energy distributions as stationary solu-
tions to a generalized two-body Boltzmann equation. We
show that this two-body Boltzmann equation allows for
nonexponential stationary single-particle distributions, if
the two-body distribution factorizes, but the two-body
energy is not extensive. The Tsallis distribution is a special
case thereof.

It is a widespread belief that only the exponential distri-
bution can be the stationary solution to the Boltzmann
equation, but this statement is true only with a few restric-
tions: (i) if the two-particle distributions factorize, (ii) the
two-particle energies are additive in the single-particle
energies (E;, = E; + E,) and (iii) the collision rate is
multilinear in the one-particle densities. A generalization
of the original Boltzmann equation has been pioneered by
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Kaniadakis [23] considering a general, nonlinear density
dependence of the collision rates. An “H,” theorem for
the particular Tsallis form of the collision rate has been
derived by Lima, Silva, and Plastino [24]. Here we follow
another ansatz; we modify the linear Boltzmann equation
in the energy balance part only: instead of requiring E; +
E,=E;+E;inal + 2« 3+ 4 two-body collision we
consider a general, not necessarily extensive, rule:

h(E,, E;) = h(E3, Ey). (1)

It is physically sensible to choose the function h(x, y)
symmetric and satisfying A(E,0) = h(0, E) = E. Also,
for applying the same rule for subsystems combined them-
selves of subsystems, associativity is required:
h(h(x, y), z) = h(x, h(y, 2)). This way the same rule applies
for the elementary two-particle system as for large sub-
systems in the thermodynamical limit. It is known that the
general mathematical solution of the associativity require-
ment is given by

h(x,y) = X7'[X(x) + X(»)] 2

with X(0) = 0 and X(¢) being a continuous, strict mono-
tonic function [25]. Composing the formula (2) with the
function X and taking the partial derivative with respect to
y at y = 0 one obtains an ordinary differential equation for
X(x) with the solution

dx
(x,0)

X(E) = X'(0) /0 £ 3)

Because of X[h(E,, E;)] = X(E,) + X(E,), the quasi-
energy X(E) is an additive quantity and the rule (1) is
equivalent to

X(E)) + X(E,) = X(E5) + X(Ey). 4

Applying such a general energy composition rule (4), the
rate of change of the one-particle distribution is given by

fl = L34W1234[f3f4 _flfz]- )

The symmetric transition probability wi,34 includes the
constraint
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A = 8(p, + Py — P3 — P4)SIA(E|, E;) — h(E;3, Ey)].

(6)

In equilibrium the distributions depend on the phase space
points through the energy variables only and the detailed
balance principle requires

FENS(E,) = f(E3)f(Ey). )

With the generalized constraint (6) this relation is satisfied
by

J(E) = f(0) exp[—X(E)/T] ®)

with 1/T = —f7(0)/f(0) and X(E) given by Eq. (3). In the
extensive case h(x, y) = x + y leads to X(E) = E; for the
Tsallis-type energy addition rule [19,20],

h(x,y) = x +y + axy, 9)
one obtains X(E) = % In(1 + aE) and
f(E) = fO)(1 + aE)~V/eT, (10)

Since the energy addition rule (1) conserves the quantity
h(E,, E,) in a microcollision, the new energies after the
collision also lie on the & = constant line. Because of the
additivity of the quasienergy, X(E), the total sum, X, =
> X(E;), is a conserved quantity.

Figure 1 presents results of a simple test particle simu-
lation with the rule (9). We mostly started with a uniform
energy distribution between zero and E; = 1 with a fixed
number of particles N = 10* (red, full line). The one-
particle energy distribution evolves towards the well-
known exponential curve for @ = 0, shown in the left
part of Fig. 1. This snapshot was taken after 200 two-
body collisions per particle (blue, short dashed line). The
analytical fit to this histogram is given by 2¢ /7 (with
T = E,;/2 = 0.5 in this case). An intermediate stage of the
evolution after 0.4 collisions per particle is also plotted in
this figure (green, long dashed line). Using the prescription
with @ = 1, the stationary solution becomes a Tsallis dis-
tribution. The numerical final state from the uniform en-
ergy distribution can be inspected in the right side of Fig. 1.
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FIG. 1 (color online). Evolution towards the Boltzmann dis-
tribution for a = 0 (left part) and towards the Tsallis one for a =
1 (right part) using h(E,, E,) = E, + E, + aE|E,.

The fit to this curve is given by f(E) = 2.6(1 + aE)~3S.
All distributions are normalized to one.

It is in order to make some remark on the energy
conservation. For A(x,y) = x + y we simulate a closed
system with elastic collisions: the sum, U =YV E,
does not change in any of the binary collisions. The situ-
ation changes by using a nonextensive formula for A(x, y).
With a constant positive (negative) a, the bare energy sum,
U, is decreasing (increasing) while approaching the sta-
tionary distribution. This is typical for open systems gain-
ing or losing energy during their evolution towards a
stationary state.

One may be inclined to consider the conserved quasi-
energy, X(E), as an in-medium one-particle energy. The
interesting point is that in general any prescription,
h(E,, E;)—defining a version of the nonextensive thermo-
dynamics—is equivalent to considering a quasienergy,
X(E). For small energies one expects a restoration of the
extensive rule and X(E) = E, X'(0) = 1. Whenever the
pair energy is repulsive (attractive), h(E|, E,) = E, + E,
[h(E,, E;) < E, + E,], a rising quasienergy is smaller
(bigger) than the free one, X(E) = E (X(E) = E). This
leads to a tail of the stationary distribution in the free
single-particle energy, f(E), which is above (below) the
exponential curve. This phenomenon is hard to distinguish
from a power-law tail numerically.

The question arises that—constrained by the conserved
number of particles, N = [ fdI', and the total quasienergy,
Xiot = [ fX(E)dl—what is the proper formula for the
entropy which grows when approaching the stationary
distribution. If the addition rule of the nonextensive en-
tropy, s, is given by A, (x, y), then the quasientropy, X,(s), is
additive, too, and the total entropy is given by X,(S;,) =
[fX[s()ldl = [o(f)dT. Its rate of change, X(S,) =
[ fo'(f)dU' can be expressed with the help of the
Boltzmann equation (5). Assuming the symmetry proper-
ties 1 « 2,3 — 4, and (12) < (34) for the constrained rate
factor wyy = WA, one easily derives

Xi(Sio)Sior = 3—1 f wiosa(f3fs — f1f2)la' (f1)
1234
+ 0'(f2) — o'(f3) — o'(fu)] (11)

A definite sign for this quantity can be obtained due to the
additivity of X [s(f)] = o(f)/f, leading to the unique
solution X,[s(f)] = Blnf. With B = —kz (Boltzmann’s
constant) S,,, = 0 follows. Using the kz = 1 unit system
we arrive at X [s(f)] = — Inf, and the expression for the
total additive quasientropy coincides with Boltzmann’s
original suggestion. At the same time, applying a nonex-
tensive addition rule for the entropy, h,(x,y) = x +y +
(1 — g)xy, as Tsallis did, we have Abe’s formula [26]:

X,(s) = llq In[1+ (1 — g)s], and from X(s) = —Inf

one obtains Tsallis’ entropy formula Sy = [ fs(f) =

[ f{’T—qf The problem with this formula is that it expresses
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an integral of a nonadditive entropy density. In numerical
simulations we nevertheless observe both entropy integrals
and find them to evolve parallel to a high degree (cf.
Fig. 2). Asides some binning fluctuations both expressions
level off eventually. The reason may lie in the closeness of
X, (1) to the identity for the parameter range applied here.

Physical realizations of nonextensive systems may be
discovered depending on our knowledge about the micro-
scopical forces influencing the particles during the pair
interactions. For such forces being repulsive, the canonical
one-particle energy distribution has a tail above the expo-
nential curve for attractive interactions below. The Tsallis
distribution, irrespective from which entropy expression it
has been derived in a static theory, fits multiplicity distri-
butions as well as py spectra with power-law tail in ele-
mentary particle reactions [27].

In the quark-gluon plasma (QGP), or more generally in a
parton matter before hadronization, color nonsinglet ob-
jects are the single particles. Eventually all form hadrons in
the soft sector perhaps by recombination and in the hard
sector dominantly by fragmentation. In both cases a long-
range interaction between color nonsinglet partons, con-
nected to the physical phenomenon confinement, is present
in the background. In the following we consider a simple,
speculative model for including this type of nonperturba-
tive pair interaction.

For the sake of simplicity let us restrict ourselves to two-
body processes between color triplets and antitriplets. This
is the most common way of meson formation. It is also an
important part of baryon formation due to quark-diquark
fusion. The pairs of such partons, while they constantly
interact, are either in a color singlet or in a color octet state
The energy of the two-parton system is given by
ESgorstate = p 4 F) 4 Acolorstate where the color average
is supposed to be vanishing, Asinglet + §Aoctet — () This is
certainly the case for interactions like in the Heisenberg
model of magnets, where the pair potential is proportional
to the product of symmetry generators in the corresponding
spin representation. For SU(3) color this is also the case.

Tsallis entropy

Boltzmann entropy
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FIG. 2 (color online). Evolution of the Boltzmann and Tsallis
entropies by applying the energy addition rule A(E|, E,) = E| +
E, + aE|E, with different values of the parameter a.

For considering the possibility of a non-Boltzmann dis-
tribution in quark matter we further assume a Coulomb-
like interaction. In this case ASnglet = 2ETelkin from the
binding in the color singlet channel. For the search after a
stationary single-quark distribution of the two-body
Boltzmann equation in the octet channel it accounts to
consider, ESS®t = E| + E, + E'JN™ /4. The rest is kine-
matical consideration. We assume the coalescence of two
massless partons to a (nearly) massless hadron. Because of
the triangle inequality, the kinetic energy of the relative
motion of two massless partons is non-negative, E'g*in =
|pi| + |1p2l — |p1 + P2l = 0. For small relative angles be-
tween the momentum vectors, 4, this is approximated by

o 2E1E2$in2(’l9/2)

Erlezl.kin. T
1 2

12)

The sum of the individual parton energies in the same
approximation is close to E, + E, = P = |p; + p,l.
Even very hard partons with a high value of the total pair
momentum, P, need a little relative motion for interacting:
in the singlet channel to eventually form hadrons, in the
octet channel to maintain a single-particle quark distribu-
tion typical for the prehadronic phase. The stationary
version of this distribution, while detailed balance is sat-
isfied on the two-body level, is often found to be close to
the Tsallis distribution. We propose that the above mecha-
nism, leading to E. = 1/a = 2P/sin*(9%/2), may be in the
background of such findings. Asymptotic freedom is re-
covered as for very fast partons E, — o0 with P — oo, and
so the one-particle energies of a colliding pair become
additive.

In conclusion, we have investigated deterministic, non-
extensive energy addition rules in two-body collisions. We
have pointed out that instead of the one-particle energy a
quasienergy is conserved by such rules in each collision,
leading to a non-Boltzmannian stationary distribution in
the bare one-particle energy. In particular, the Tsallis dis-
tribution is obtained by using a Tsallis-type nonextensive
energy addition rule. The Boltzmann entropy, Sp =
X,(Sio) = — [ fInfdl, is never decreasing and reaches
its maximum at this distribution. Alternative expressions
for the entropy, in particular, the one promoted by Tsallis,
correspond to a nonextensive entropy addition rule which
defines X (s). The Tsallis-type energy and entropy addition
rules are related by ¢ = 1 — aT.

As a possible physical realization we have proposed a
mechanism leading to nearly Tsallis-distributed quarks in
quark matter and hadrons which eventually form. This
mechanism considers a color state dependent pair energy.
The use of a virial theorem connects the color interaction
with kinematical factors of the quark pair. In a certain
approximation the modification of the familiar two-body
energy conservation factor in the Boltzmann equation re-
ceives a term proportional to the product of single-quark
kinetic energies to leading order in the ultrarelativistic
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expansion. This leads to a power-law tailed energy distri-
bution. We note that the present approach, similar to the
superstatistics [28], can be applied to distributions more
general than the Tsallis one. The non-Gaussian behavior of
large subsystems and their fluctuations may be reflected in
the fact that the conserved energy, Eio = X [3,X(E))],
contains up to N-particle product terms.

Our mathematical model can be used either (i) to de-
scribe equilibrium states with exponential distribution in a
quasienergy with a nontrivial dispersion relation,
X[E(|pl)], typical for medium time-scale long-range inter-
actions, or (ii) as an effective algorithm to simulate meta-
stable or stationary open systems with particular energy
distributions, f(E), by using simple collision rules. In some
real physical systems the energy composition rule may
relax to the additive one on the long term; in some other
situations, like hadronization of quark matter, the detected
particles already follow a free dispersion relation, but their
distribution belongs to an earlier, highly correlated state.
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