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General Nonextremal Rotating Black Holes in Minimal Five-Dimensional Gauged Supergravity
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We construct the general solution for nonextremal charged rotating black holes in five-dimensional
minimal gauged supergravity. They are characterized by four nontrivial parameters: namely, the mass, the
charge, and the two independent rotation parameters. The metrics in general describe regular rotating
black holes, providing the parameters lie in appropriate ranges so that naked singularities and closed
timelike curves (CTCs) are avoided. We calculate the conserved energy, angular momenta, and charge for
the solutions, and show how supersymmetric solutions arise in a Bogomol’nyi-Prasad-Sommerfield limit.
These have naked CTCs in general, but for special choices of the parameters we obtain new regular
supersymmetric black holes or smooth topological solitons.
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The discovery of the remarkable anti–de Sitter/confor-
mal field theory (AdS/CFT) correspondence showed that
bulk properties of solutions in the five-dimensional gauged
supergravities that result from compactification of the
type IIB string are related to properties of strongly coupled
conformal field theories on the four-dimensional boundary
of five-dimensional anti–de Sitter spacetime [1–3]. It
therefore becomes of great importance to study the solu-
tions of the five-dimensional gauged supergravity theories.
One of the most important classes of such solutions are
those that describe black holes in five dimensions. In
particular, it has been argued that the boundary conformal
field theory dual to rotating five-dimensional black holes
should describe a system in a four-dimensional rotating
Einstein universe [4].

The rotating five-dimensional solutions found in
[4] were neutral Kerr–(anti-)de Sitter black holes. In
order to be able to make contact with supersymmetric
Bogomol’nyi-Prasad-Sommerfield (BPS) configurations,
for which the AdS/CFT correspondence is more solidly
founded, it is of considerable interest to generalize the
neutral solutions to include electric charge too. In the
analogous problem in ungauged supergravity, it is straight-
forward to generate charged solutions from neutral ones,
by using the global symmetries of the ungauged super-
gravities as solution-generating transformations. By this
means, the general charged rotating black holes of five-
dimensional ungauged supergravity were obtained in [5],
starting from the neutral rotating Ricci-flat black holes
found in [6]. For the solutions in gauged supergravity there
are no surviving global symmetries that can be used to
provide solution-generating transformations, and one has
little option but to resort to brute-force calculations, start-
ing from an appropriate ansatz, to construct the charged
rotating solutions. One way to simplify the problem is to
specialize to the case where the two independent rotation
parameters of the generic five-dimensional rotating black
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hole are set equal, since this reduces the problem from
cohomogeneity-2, with partial differential equations, to
cohomogeneity-1, with ordinary differential equations.
Supersymmetric rotating black holes with two equal angu-
lar momenta were obtained in [7], and it was shown in [7]
that the rotation is necessary for the solution to be free of
naked singularities and closed timelike curves (CTCs). The
nonextremal charged rotating solutions of gauged five-
dimensional supergravity with equal rotation parameters
were constructed in [8,9]. Recently, some special cases
involving unequal rotation parameters were also con-
structed in [10]. However, these latter arose as solutions
of N � 2 gauged supergravity coupled to two vector
multiplets, with a specific relation between the three elec-
tric charges, and did not, in general, admit a specialization
to solutions of pure minimal N � 2 gauged supergravity.
The purpose of this Letter is to present the general solution
for charged rotating nonextremal black holes in minimal
five-dimensional gauged supergravity, with independent
rotation parameters in the two orthogonal 2-planes (two-
dimensional planes).

We have found the general solution for charged rotating
black holes in five-dimensional minimal gauged super-
gravity, with unequal angular momenta, by a process in-
volving a considerable amount of trial and error, followed
by an explicit verification that the equations of motion
are satisfied. In doing this, we have been guided by the
previously obtained special case found in [8], where the
two angular momenta were set equal, and the general
charged rotating solutions in ungauged minimal supergrav-
ity, which are contained within the results in [5]. In this
Letter, we begin by presenting our new solutions, and then
we calculate the conserved angular momenta and electric
charge. By integrating the first law of thermodynamics, we
also obtain the conserved mass, or energy, of the solutions.
By considering the conditions under which the anticom-
mutator of supercharges in the AdS superalgebra has zero
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eigenvalues, we then show how a BPS limit of our general
nonextremal solutions gives rise to new supersymmetric
configurations. These include new supersymmetric rotat-
ing black holes, with two independently specifiable angu-
lar momenta, and new topological solitons that are
nonsingular on complete manifolds.

In terms of Boyer-Lindquist–type coordinates x� �
�t; r; �;�;  � that are asymptotically static (i.e., the coor-
dinate frame is nonrotating at infinity), we find that the
metric and gauge potential for our new rotating solutions
can be expressed as
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A straightforward calculation shows that these configura-
tions solve the equations of motion of minimal gauged
five-dimensional supergravity, which follow from the
Lagrangian

L ��R�12g2��1�
1
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3
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3
p F^F^A; (4)
where F � dA, and g is assumed to be positive, without
loss of generality.
16130
For some purposes, it is useful to note that the non-
vanishing metric components are given by
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becomes null on the outer Killing horizon at r � r�, the
largest positive root of �r � 0, where the angular veloc-
ities on the horizon are given by
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One can then easily evaluate the surface gravity
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and hence the Hawking temperature T � �=�2��. The
entropy is given by
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The angular momenta can be evaluated from the Komar
integrals J � 1=�16��

R
S3 �dK, where K � @=@� or K �
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The electric charge follows from the Gaussian integral
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Using the technique introduced in [11], the easiest way to
calculate the conserved mass, or energy, is to integrate the
first law of thermodynamics dE � TdS��adJa �
�bdJb ��dQ, where � � ‘�A� is the electrostatic po-
tential on the horizon. Doing this, we find

E �
m��2�a � 2�b ��a�b� � 2�qabg2��a ��b�

4�2
a�2

b

:

(12)

The BPS limit can be found by looking at the eigenval-
ues of the Bogomol’nyi matrix coming from the anticom-
mutators of the supercharges, as discussed in [12]. We have
BPS solutions if E� gJa � gJb �

���
3
p
Q � 0. (We have,

without loss of generality, made specific sign choices here.)
From the expressions for �E; Ja; Jb;Q�, we find that the
BPS limit is then achieved if
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m
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The supersymmetry of the solutions in this limit can be
confirmed by calculating the norm of the Killing vector
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which, as discussed in [12], arises as the square of the
Killing spinor �, in the sense that K�

� � ��	��. We find
that its norm is given by
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where

h � �1� ag��1� bg��1� �a� b�g��2: (16)

Thus indeed the norm ofK� is, as it should be since it has a
spinorial square root, manifestly negative definite. The
fraction of supersymmetry preserved is in general 1

4 , except
when a � �b, in which case the preserved supersymmetry
is doubled to become 1

2 . The latter solution was previously
obtained in [13].

We now discuss the global structure of the rotating AdS5

black hole. To do this, we first note that the metric can be
expressed as

ds2��
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where the functions B�, B , v1, v2, and v3 can be straight-
forwardly found by comparing (17) with the metric in (1).
The absence of naked CTCs requires that B� and B be
non-negative outside the horizon. We shall focus on the
discussion of supersymmetric solutions, satisfying the con-
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dition (13). It can be seen from (15) that the identity
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holds. It follows that in general, at the Killing horizon
where �r � 0, we have B� 
 B < 0, implying the exis-
tence of naked CTCs. There are two special cases where
naked CTCs can be avoided, leading to either supersym-
metric black holes or topological solitons.

Supersymmetric black holes.—The first way to avoid
naked CTCs is if the right-hand side of (18) vanishes on
the Killing horizon. This occurs when the parameters in the
supersymmetric solutions satisfy the further restriction

gm � �a� b��1� ag��1� bg��1� ag� bg�: (19)

Remarkably, when this extra condition is satisfied, the
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This implies that naked CTCs are avoided if the remaining
free parameters a and b satisfy the inequality

a� b� abg > 0: (22)

The Killing horizon r � r0 is then the event horizon of a
well-defined supersymmetric black hole that is regular on
and outside the event horizon. The occurrence of the
double root of �r at r � r0 implies that the black hole
has zero temperature. The various conserved and thermo-
dynamic quantities for these new supersymmetric black
holes are given by
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Note that supersymmetric black holes cannot arise when
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a � �b. Our new supersymmetric black holes have
cohomogeneity-2, reducing to 1 if a � b. The supersym-
metric a � b cases were obtained in [7], and extended to
include additional vector multiplets in [14].

Topological solitons.—The second way to avoid naked
CTCs is if B� � 0 at r � r0. This can happen when the
free parameters in the general supersymmetric solutions
obey the further restriction

m � ��1� ag��1� bg��1� ag� bg��2a� b� abg�

� �a� 2b� abg�: (24)

Now r0, the outer root of �r, is given by
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Defining a new radial coordinate R � r2 � r2
0, we find that

the metric describes a smooth topological soliton, with R
running from 0 to 1. The requirement of the absence of a
conical singularity when B� vanishes at R � 0 implies the
quantization condition

�a� b� abg��3� 5ag� 5bg� 3abg2�

�1� ag��a� 2b� abg�
� 1: (26)

In the cohomogeneity-1 special cases a � b or a � �b,
these topological solitons are encompassed within the
soliton solutions obtained in [12].

Aside from the above two possibilities, the supersym-
metric solutions in general have naked CTCs. As in the
examples discussed in [10,12], a conical singularity at the
Killing horizon can be avoided by periodically identifying
the asymptotic time coordinate t with an appropriate pe-
riod. However, if the Killing horizon is associated with a
double root of �r, then such an identification is unneces-
sary, analogous to the ungauged rotating solution obtained
in [15]. The geodesic analysis of analogous time machines
can be found in [16,17].

In the general case where the charged rotating metrics
that we have found are nonextremal, they describe regular
black holes provided the parameters lie in appropriate
ranges that are easily determinable using the same tech-
niques we have used above for analyzing the BPS limits.

As discussed in [4], rotating black hole solutions in five-
dimensional gauged supergravity provide backgrounds
whose AdS/CFT duals describe four-dimensional field
theories in the rotating Einstein universe on the boundary
of anti–de Sitter spacetime. With the general solutions in
16130
minimal gauged supergravity that we have now found, this
aspect of the AdS/CFT correspondence can be studied in a
framework that also allows one to take a BPS or near-BPS
limit, where the mapping from the bulk to the boundary is
better controlled. In particular, it is of great interest to
provide the microscopic interpretation from the boundary
CFT for the entropy (23) of the supersymmetric black
holes with two general rotations. We plan to report further
on these considerations in forthcoming work.
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