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Direct Observation of Nondiffusive Motion of a Brownian Particle
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The thermal position fluctuations of a single micron-sized sphere immersed in a fluid were recorded by
optical trapping interferometry with nanometer spatial and microsecond temporal resolution. We find, in
accord with the theory of Brownian motion including hydrodynamic memory effects, that the transition
from ballistic to diffusive motion is delayed to significantly longer times than predicted by the standard
Langevin equation. This delay is a consequence of the inertia of the fluid. On the shortest time scales
investigated, the sphere’s inertia has a small, but measurable, effect.
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Diffusion governed by Brownian motion is an efficient
transport mechanism on short time and length scales. Even
a highly organized system like a living cell relies in many
cases on the random Brownian motion of its constituents to
fulfill complex functions. A Brownian particle will rapidly
explore a heterogeneous environment that in turn strongly
alters its trajectory. Thus, detailed information about the
environment can be gained by analyzing the particle’s
trajectory. For instance, single particle rheology measures
the local viscoelastic response of soft materials [1]. A
thermally driven particle can image the topography of a
surrounding polymer network [2]. The motion of a
Brownian probe can also be used to characterize mechani-
cal properties of molecular motors [3]. In all cases, high
spatial resolution down to the nanometer scale is needed.
High resolution is directly connected to the requirement to
observe the motion on short time scales. For instance, a
typical 1 �m size probe particle in water diffuses about
1 nm within 1 �s. However, at this fast time scale, the
inertia of the particle and the surrounding fluid can no
longer be neglected, and one expects to see a transition
from purely diffusive to ballistic motion. Thus, for com-
plete understanding, an analysis of Brownian motion at
very short time scales is necessary, taking effects of inertia
into account.

The exact nature of the interaction between a Brownian
particle and the surrounding fluid has been a subject of
research in the last century [4–12]. As first described by
Einstein [4], a Brownian particle receives momentum from
the thermal fluctuations of the surrounding molecules, but
its movement is damped by the viscosity of the fluid. The
particle’s motion can be characterized by the time evolu-
tion of the mean-square displacement h�x2�t�i, which is
derived from the Langevin equation:

m �x � Ffr � Fth � Fext; (1)

where m is the inertial mass of the particle, Ffr is the
friction force, Fth is the force arising from random thermal
fluctuations, and Fext represents all external forces. For a
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free particle, i.e., Fext � 0, at t! 1, the motion is diffu-
sive with h�x2�t�i � t. For short times, when t! 0, the
motion becomes ballistic with h�x2�t�i � t2. At intermedi-
ate times, h�x2�t�i depends on the details of the interaction
between the particle and its surrounding fluid. In the bal-
listic regime and at intermediate times, the motion is often
referred to as nondiffusive to distinguish from the com-
monly known diffusive regime. The standard Langevin
equation assumes that the friction force is instantaneously
linear with the particle’s velocity, i.e., Ffr �� _x. However,
when the particle receives momentum, it displaces the fluid
in its immediate vicinity. The surrounding flow field is
altered and acts back on the particle due to a non-negligible
fluid inertia, as described by Hinch [6]. The friction force
then includes additional terms that depend on the particle’s
past motion [13], which leads to a hydrodynamic memory
effect and a corrected form of the Langevin equation. Such
a hydrodynamic effect delays the transition from ballistic
to diffusive motion, resulting in a persistence of the non-
diffusive motion to much longer times.

The first indication that the standard Langevin equation
does not describe Brownian motion correctly stemmed
from numerical simulation of molecular motion in liquids,
where ‘‘long-time tails’’ were found in the particle’s veloc-
ity autocorrelation function [7]. Subsequent experiments
using dynamic light scattering in colloidal suspensions
[8,9] confirmed that the Brownian motion of colloidal
particles is more accurately described by the corrected
Langevin equation, but averaging over an ensemble of
different particles was necessary and hydrodynamic inter-
actions between particles could not be excluded [14]. Up to
now, no experiment on a single particle showed quantita-
tive agreement to the corrected theory [10–12].

In this Letter, we used a weak optical trap and interfero-
metric particle position detection to follow directly the
trajectory of a single particle in a fluid on a time scale
that is sufficiently short to see nondiffusive Brownian
motion. The optical trap [15] was created by focusing a
20� -expanded Nd-YAG laser beam (� � 1064 nm) by a
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FIG. 1. Calculated h�x2�t�i for a polystyrene sphere (a �
1:25 �m) in the optical trap at various stiffnesses (continuous
lines, k1 � 1:2, k2 � 4:4, and k3 � 16 �N=m). The dashed
curve indicates free Brownian motion in the diffusive regime
when h�x2�t�i � 2Dt.
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63� water-immersion objective lens (NA � 1:2, where
NA is numerical aperture). Trap stiffness depends linearly
on the laser power and was varied by introducing neutral
density filters of different transmission coefficients into
the laser beam path. A dilute suspension of microspheres
was loaded into the interior of a rectangular liquid cell
(size�2 cm� 0:5 cm and thickness�100 �m). We used
either polystyrene (radius a�0:265, 0.5, 1.205, 1:25 �m)
or silica (a � 1:2 �m) spheres suspended in water at low
concentrations to allow trapping and observation of iso-
lated particles [16]. The light scattered by the trapped
particle and the unscattered laser light are projected onto
a quadrant photodiode where they form an interference
pattern. A quadrant photodiode senses changes in the
interference pattern that can be converted directly into a
position signal. Because of the strong scattering signal, we
achieve nanometer spatial and microsecond temporal reso-
lution [17,18]. Therefore, the optical trap has a twofold
function: it ensures that the particle remains within the
detector range, and it provides a light source for the posi-
tion detection. The lateral position fluctuations x�t� of the
trapped sphere were measured with an InGaAs quadrant
photodiode [19]. The position signal was recorded for 2 s at
5 MHz using a low-pass filter with a cut-off frequency at
1 MHz, amplified and digitized (12 bits). The effective
sampling rate fs was 500 kHz; such high oversampling
avoids aliasing artifacts in data acquisition [20]. A constant
offset from the high-frequency noise of the laser source and
the detection system was subtracted from the calculated
h�x2�t�i [21].

In our experiment, the particle was confined inside a
weak and harmonic optical trapping potential, which adds
a force term Fext � �kx to the Langevin equation, where k
is the trap stiffness. In order to estimate k [22], we cali-
brated the detector sensitivity using the standard Langevin
theory, as commonly done [23]. This method introduced a
systematic error in the form of a multiplicative factor, but
was nevertheless sufficiently accurate to evaluate how the
mean-square displacement h�x2�t�i is influenced by the
confinement of the trapping potential.

Figure 1 shows h�x2�t�i calculated from one-
dimensional time traces of the largest polystyrene micro-
sphere (a � 1:25 �m), over five decades of time for three
different trap stiffnesses. In comparison, the dashed line in
Fig. 1 indicates how h�x2�t�i would evolve if the particle
was performing free and diffusive Brownian motion. The
theoretical expectation is h�x2�t�i � 2Dt, with the diffu-
sion coefficient D � kBT=�6��a�, where � is the viscos-
ity of the fluid. However, a particle in an optical trap
experiences an additional drift towards the trap center
due to Fext. The position autocorrelation time of the parti-
cle motion �trap � 6��a=k describes the time scale on
which Fext makes the particle return from a displaced
position to the trap center. For the softest trap (k1), �trap �

20 ms; for the stiffest trap (k3), �trap � 1 ms. As seen in the
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three data sets in Fig. 1, for t	 �trap, h�x2�t�i approaches
a constant value that is inversely proportional to the trap
stiffness as h�x2�1�i � 2kBT=k. For t 
 �trap, the trap-
ping force-induced drift causes h�x2�t�i of the displaced
particle to be smaller than that of a free particle. For t�
�trap, the fluctuations of the sphere approach that of a free
particle independent of its position in the trap [24].
Furthermore, at times below 10�4 s, Fig. 1 shows that the
motion starts to deviate from the diffusive regime. In order
to study this free and nondiffusive motion in greater detail,
we used the softest trap and analyzed h�x2�t�i on time
scales that were two decades below �trap, where the influ-
ence of Fext is negligible [25].

We use the dimensionless representation h�x2�t�i=�2Dt�
to distinguish between the diffusive regime when
h�x2�t�i=�2Dt� � 1 and the nondiffusive regime when
h�x2�t�i=�2Dt�< 1. In the standard Langevin equation a
fast exponential transition from the ballistic to the diffusive
regime occurs with

h�x2�t�i
2Dt
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where h�x2�t�i depends additionally on �f � a2�f=�,
where �f is the density of the fluid. ��

�p
�f
; t�f� is a small

correction term [26]. Both equations are dependent on the
particle’s inertia through the time �p, but the second equa-
tion also accounts for the fluid’s inertia through the char-
acteristic time �f. The 2 times are related by the relation
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�p=�f �
2
9�p=�f. The only difference between Eqs. (2)

and (3) is that they were derived assuming different friction
laws (note that the friction force does not depend on �p, but
only on a and �f [13]). By neglecting the particle’s inertia,
�p approaches zero and the nondiffusive terms disappear in
Eq. (2). In Eq. (3) the nondiffusive motion persists due to
the term that contains the characteristic time �f, which
corresponds to the time taken by the perturbed flow field to
diffuse over a distance of one particle’s radius. The stan-
dard Langevin equation does not assume any perturbation
of the fluid due to the motion of the Brownian particle, and
hence �f does not appear in Eq. (2).

In order to study the influence of the fluid’s inertia, we
tracked the Brownian motion of particles with the same
density (polystyrene, �p=�f � 1:06) but different radii
[27]. This effect is equivalent to varying both �f and �p,
while keeping �p=�f constant. Figure 2 shows the time
evolution of h�x2�t�i=�2Dt�, as well as the experimental
data as obtained from single time traces of three different
sphere sizes (a � 0:265, 0.5, 1:25 �m). Equation (3) was
fitted to the data for times t < 150�f, with one fitting
parameter—a multiplicative factor corresponding to the
detector sensitivity [28]. Since the time in Fig. 2 is nor-
malized with �f, spheres with the same density but differ-
ent sizes fall on the same curve. Although all three data sets
have the same temporal resolution of 1=fs � 2 �s, they
sample different regions of the theoretical curve due to
their different values of �f (�f � 0:07, 0.25, 1:56 �s,
respectively). Larger spheres go to lower values of t=�f,
and data points are more closely spaced on the graph. The
theory agrees with the data within 2%, and the same
accuracy was obtained for measurements with 10 different
spheres.

The influence of the particle’s inertia can be determined
by comparing the position fluctuations of particles of the
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FIG. 2. The corrected Langevin theory (continuous line) is
fitted to the experimental data for three different radii of a
polystyrene sphere (a � 0:265 �m, �; 0:5 �m, �; 1:25 �m,
�). The standard Langevin theory is plotted as a dashed line for
comparison. (For the largest sphere some data points were
removed for clarity.)
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same size but different densities, as shown in Fig. 3. We
again fitted Eq. (3) (continuous lines) to the data. Here,
inertias of the two particles are different (different �p), but
the inertia of the perturbed fluid stays the same (same �f).
The data for the two particles differ from each other by
only 6% for the shortest times measured. Thus, for t 
 �f,
the fluid’s inertia influences the Brownian motion more
than the particle’s inertia. A single curve on which all data
fall cannot be obtained by normalizing time with �f or �p,
since the ratio �p=�f is not constant. In contrast, the
standard Langevin equation (dashed lines) gives the same
master curve for curves with different particle densities �p,
when scaled with �p (inset), as expected from Eq. (2). The
corrected Langevin equation thus predicts two phenomena
operating on different time scales that can influence the
motion of a Brownian particle.

In the corrected model of Brownian motion [6], the
thermally excited fluid molecules give momentum to the
particle which is further redistributed between the particle
and the surrounding fluid. Because the fluid has been
displaced by the particle, the momenta of the fluid mole-
cules are not randomly distributed, and when the particle
slows down due to the fluid, the frictional force has not yet
attained its steady-state value. The motion of the surround-
ing fluid thus contains information of the particle’s past
motion. We can infer from Eq. (3) that this hydrodynamic
memory influences the particle’s motion up to times on the
order of 104�f. However, in our experiments, for this time
FIG. 3. Comparison of the nondiffusive motion of particles
with the same radius and different densities. Theory and experi-
mental data for spheres made of polystyrene (�p=�f � 1:06) are
colored in black and for those made of silica (�p=�f � 1:96) in
gray. The standard and the corrected Langevin theory are plotted
as dashed and continuous lines, respectively. Experimental data
are represented as � for silica (a � 1:2 �m) and as � for
polystyrene (a � 1:205 �m). Time is divided by �f (�f �
1:44 �s). Inset: The same data, but time is scaled with �p.
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scale, the motion is already dominated by the optical trap
as shown in Fig. 1 [29].

In summary, we observed the transition regime between
ballistic and diffusive motion of a single particle in an
optical trap and found excellent agreement with the
Langevin equation corrected for the inertia of the surround-
ing fluid. The fluid inertia dominates the response in the
nondiffusive regime. A small contribution expected from
the particle’s inertia could still be quantified. This study
underlines that deviations from the standard Langevin
theory, due to the fluid inertia and the resulting hydro-
dynamic memory effect, become increasingly important
when high-resolution experiments are performed.

Our method allows studying details of the mobility of
Brownian particles in heterogeneous environments such as
complex fluids or living cells that were previously not
accessible. Ultimately, the achieved precision may address
principles governing particle motion in cells and other
physical systems where energies are comparable to kBT.
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