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Generation of Atomic Cluster States through the Cavity Input-Output Process
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We propose a scheme to implement a two-qubit controlled-phase gate for single atomic qubits, which
works in principle with nearly ideal success probability and fidelity. Our scheme is based on the cavity
input-output process and the single-photon polarization measurement. We show that, even with the
practical imperfections such as atomic spontaneous emission, weak atom-cavity coupling, violation of the
Lamb-Dicke condition, cavity photon loss, and detection inefficiency, the proposed gate is feasible for
generation of a cluster state in that it meets the scalability criterion and it operates in a conclusive manner.
We demonstrate a simple and efficient process to generate a cluster state with our high probabilistic
entangling gate.
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FIG. 1. The setup for the basic building block. A qubit is
encoded in two ground levels j0i and j1i of a 3-level atom
trapped in a one-sided optical cavity. The transition between
states j1i and jei is coupled resonantly to the right circularly
polarized mode of the cavity with coupling rate g. � denotes the
atomic spontaneous emission rate. The cavity photon is either
transmitted through the cavity mirror with rate �c or lost with
rate �l. bin�t� and bout�t� denote the input and the output field
operators, respectively.
The one-way quantum computation [1–5] has opened up
a new paradigm for constructing reliable quantum com-
puters. In their pioneering works [1,2], Raussendorf and
Briegel showed that preparation of a particular entangled
state, called a cluster state, accompanied with local single-
qubit measurements, is sufficient for simulating any arbi-
trary quantum logic operations. Therefore, experimental or
intrinsic difficulties in performing two-qubit operations
can be substituted with (possibly probabilistic) generation
of an entangled state. Especially, Nielsen showed that the
resource overhead of a conventional linear optics quantum
computer [6] is drastically decreased by combining it with
the idea of the one-way quantum computation [4].

A cluster state can be visualized as a collection of qubits
and lines connecting them. In order to generate a cluster
state systematically, one first initializes each qubit in state
j�i � 1��

2
p �j0i � j1i�, where j0i and j1i are the computa-

tional basis states, and then performs controlled-phase
operations between every neighboring qubit connected by
the lines. In some previous works [7–9], it was shown that
in principle there is no threshold value of p required for
efficient generation of a cluster state, where p is the
success probability of each controlled-phase operation.
For a reasonable computational overhead, however, a
high success probability p should be attained.

In the present Letter, we propose a scheme to implement
a two-qubit controlled-phase gate for single atomic qubits,
which works in principle with nearly ideal success proba-
bility and fidelity. The proposed entangling gate is suitable
for the systematic generation of a cluster state described
above for two reasons. The first is that it works between
two individually trapped atoms; thus, it meets the scalabil-
ity criterion. Since a large number of qubits should be
entangled in a cluster state to perform a nontrivial quantum
computation, entangling gates which work only inside a
single trapping structure [10–13] cannot be used directly
for our goal. The second is that, in contrast to other scalable
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two-qubit gate schemes [14–16], it operates in a conclusive
manner even in the practical situation. Even if the success
probability decreases due to the experimental imperfec-
tion, one can still detect whether the operation has suc-
ceeded or not, and in case it has succeeded, the fidelity is
very high [7,17]. We demonstrate how a cluster state of an
arbitrary configuration can be generated with our high
probabilistic entangling gate.

Figure 1 shows the setup for the basic building block of
our scheme. A qubit is encoded in two ground levels j0i
and j1i of a 3-level atom, which is trapped in a one-sided
optical cavity. The transition between states j1i and jei is
coupled resonantly to the right circularly polarized mode
of the cavity with coupling rate g, and state j0i is de-
coupled from the cavity field. We consider two kinds of
transition channels for the cavity photon. The first one is
the cavity decay due to transmission through the cavity
mirror, whose rate is �c. Every other unwanted photon loss,
such as cavity absorption and scattering, is characterized
by the overall loss rate �l. For the gate operation, we will
1-1 © 2005 The American Physical Society
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FIG. 2. When the photon does not interact with the atom,
(a) the success probability P0 and (b) the fidelity F0 with respect
to �l for �cTf � f10; 20; 30; 50; 70g. In (b), the upper curve is
obtained for the longer Tf in order.
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inject a photon into the cavity and observe the output
photon along the cavity decay channel, and postselect
those cases in which a photon is detected. The evolution
of the system, then, can be described by the non-Hermitian
conditional Hamiltonian in the framework of the quantum
trajectory method [18]. In the rotating frame, the condi-
tional Hamiltonian of the system, without the cavity decay,
can be written as

Hs��i
�
2
jeihej�g�ajeih1j�ayj1ihej�� i

�l
2
aya; (1)

where � and a denote the atomic spontaneous emission
rate and the annihilation operator for the right circularly
polarized mode of the cavity, respectively. Taking into
account the coupling through the cavity decay channel,
the system is fully specified by the boundary condition

bout�t� � bin�t� �
������
�c
p

a�t�; (2)

and the quantum Langevin equation

_s � �i�sHs �H
y
s s� � �s; ay�

�
�c
2
a�

������
�c
p

bin�t�
�

� �s; a�
�
�c
2
ay �

������
�c
p

byin�t�
�
; (3)

where s is an arbitrary system operator, and bin�t��bout�t��
is the input (output) field operator [19].

Suppose the atom is initially prepared in its ground state.
When a photon is reflected from the cavity, its pulse shape
would be changed due to the interaction with the atom-
cavity system. In particular, when both the adiabatic con-
dition (j _s

s j � �c; g) and the strong atom-cavity coupling
condition (g	 �c; �) are satisfied, the system only ac-
quires a conditional phase shift with a good approximation
[20]. If the atom is in state j1i and a right circularly
polarized photon is incident, the system acquires no phase
shift. Otherwise, i.e., if the photon does not see the atom,
the system acquires a phase shift of �. Accordingly, in this
regime, the simple setup of Fig. 1 serves as a controlled-
phase gate between a photonic qubit and an atomic qubit.

Before introducing the complete scheme, let us inves-
tigate this building block in more detail taking into account
various aspects of practical imperfections. We assume the
atom is trapped in a harmonic potential. Since the cavity
field varies spatially along the cavity axis, the harmonic
motion of the atom leads to time variation of the atom-
cavity coupling rate. With an assumption that the gate
operates outside the Lamb-Dicke condition, we model
the time dependence of the atom-cavity coupling rate as
g�t� � g0 cos� �3 sin�2�tTg ����, where Tg denotes the pe-

riod of the atomic motion and� is an arbitrary phase. Here,
we have allowed the coupling rate to vary between g0=2
and g0 in accordance with a typical cavity QED experi-
ment [21]. The pulse shape of the input photon is assumed
to be fin�t� � �Tf cosh�2tTf��

�1, which is normalized asR
jf�t�j2 � 1. Here, Tf denotes the pulse width. We define

P as the success probability that a photon is detected,
16050
which is identical to the probability that no photon is lost
by the atomic spontaneous emission (with rate �) or the
unwanted cavity photon loss (with rate �l). Since we
postselect those cases in which a photon is detected, the
pulse shape fout�t� of the output photon can be regarded to
be normalized as

R
jfout�t�j2 � 1, and the fidelity F be-

tween the two pulses is given by F � j
R
f
in�t�fout�t�dtj.

All of the values above can be obtained on the basis of the
cavity input-output formulas (2) and (3).

Let us first consider a case in which a photon reflects
from a bare cavity. Let P0 and F0 be the success probability
and the fidelity in this case, respectively. In Fig. 2, we plot
(a) P0s and (b) F0s with respect to �l varying the pulse
width: �cTf � f10; 20; 30; 50; 70g. Figure 2(a) shows the
success probability is determined dominantly by �l: P0

decreases as �l increases. In Fig. 2(b), the upper curve is
obtained for the longer Tf in order. This behavior is origi-
nated from the fact that the adiabatic condition is satisfied
more strongly with the longer pulse width. When �cTf *

50, the attained fidelity is found to be very close to the ideal
value (F0 > 0:995) regardless of the cavity photon loss.
Our numerical calculations indicate that, in every case, the
acquired phase shift is exactly �. Second, we consider
another case in which a right circularly polarized photon
reflects from the cavity while the atom is prepared in state
j1i. In this case, due to the interaction between the photon
and the atom, the reflection occurs in a different manner.
Let P1 and F1 be the success probability and the fidelity in
this case, respectively. In Fig. 3, we plot (a) P1s and
(b) F1s, which have been averaged over �, with respect
to the average atom-cavity coupling rate hg�t�i for every
combination of parameter sets: �cTf � f10; 50g, �cTg �
f50; 125g, and kl=�c � f0; 0:2g. Here, we have assumed
� � �c. In this case, our numerical simulations indicate
that the cavity photon is hardly created. The photon loss is
thus dominated by the atomic spontaneous emission.
Accordingly, both P1 and F1 are determined dominantly
by the atom-cavity coupling rate, which is why each curve
in Fig. 3 is hardly distinguishable. Figure 3(b) shows that
the fidelity is very close to the ideal value even in the weak
atom-cavity coupling regime. The acquired phase is found
to be exactly zero.

A remarkable point of the above numerical results is
that, though the success probability could decrease due to
1-2
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FIG. 3. When the photon interacts with the atom, (a) the
success probability P1 and (b) the fidelity F1 with respect to
the average atom-cavity coupling rate hg�t�i for every combina-
tion of parameter sets: �cTf � f10; 50g, �cTg � f50; 125g, and
�l=�c � f0; 0:2g.

PRL 95, 160501 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
14 OCTOBER 2005
the unavoidable photon loss, the fidelity remains very high
in most parametric regimes we have considered. From now
on, let us assume F0 � F1 � 1 for simplicity. In order to
demonstrate that the setup of Fig. 1 serves as a controlled-
phase gate, suppose a photon in state 1��

2
p �jLi � jRi�, where

jLi�jRi� denotes a left (right) circularly polarized photon,
is reflected from the cavity while the atom is in state 1��

2
p �

�j0i � j1i�. A straightforward calculation yields the suc-
cess probability P � P0

4 �3� r� and the fidelity F � 3�
��
r
p

2
�������
3�r
p ,

where we have defined r � P1=P0. The resulting entangled
state can be written as 1�������

3�r
p �j0ijLi � j0ijRi � j1ijLi ����

r
p
j1ijRi� up to a global phase.
Now, the building block in Fig. 1 can be exploited for

our goal. Figure 4 shows the controlled-phase gate between
two atoms A and B. Each W in the figure represents a �=4
plate that converts the basis of a single-photon qubit be-
tween fjLi; jRig and f 1��

2
p �jLi  jRi�g. Initially, each atom is

prepared in state 1��
2
p �j0i � j1i�. For the gate operation, a

single photon in state jLi is injected from the left and the
polarization of the output photon is measured at the detec-
tor. From straightforward algebra, one can find that a

photon in state jLi is detected with probability PL �
P2

0

32 �

�r2 � 2r� 4�r� 1�
���
r
p
� 13�, while a photon in state jRi

with probability PR �
P2

0

32 �r� 3�2. In the former case, the
final state becomes

j�Li �
P0���������
8PL
p

�
j0iAj0iB � j0iAj1iB � j1iAj0iB

�
r� 2

���
r
p
� 1

2
j1iAj1iB

�
; (4)
FIG. 4. Controlled-phase gate between atom A and atom B.
Each W represents a �=4 plate and D represents a polarization
detector. For the gate operation, a left circularly polarized single
photon is injected from the left and the polarization of the output
photon is measured at the detector.
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and in the latter case,

j�Ri �
P0���������
8PR
p

�
j0iAj0iB � j0iAj1iB �

���
r
p
j1iAj0iB

�
r� 1

2
j1iAj1iB

�
; (5)

which can be converted to the desired entangled state by
applying a Pauli operator �x on atom B. In Fig. 5, we plot
(a) the success probability P � PL � PR and (b) the aver-
age fidelity F with respect to r � P1=P0. Since a photon
passes through two cavities in order, the success probabil-
ity is basically second order in P0 and P1. The fidelity is
found to be very high regardless of the success probability.
In particular, when P0 ’ P1, the attained fidelity is as high
as 1. An interesting property of the gate is that the fidelity
would be decreased as the atom-cavity coupling rate is
increased. In order to get an optimal fidelity, one first
increases F0 by increasing the pulse width as shown in
Fig. 2(b), and then adjusts �l and hg�t�i to have P0 � P1.
For a typical cavity decay rate �c=2� � 4 MHz [21], one
gets F0>0:995 with Tf � 50=�c ’ 2 �s. We note that the
success probability could decrease further due to photon
losses at other parts of the setup in Fig. 4, such as optical
components, optical paths, and the detector. Even in those
cases, the fidelity is not affected as long as the losses are
polarization independent and dark counts are neglected.

There is still room for improvement by which one can
replace each one-sided cavity in Fig. 4 with a two-sided
cavity. Let us assume both cavity mirrors have the same
decay rate �0c. One can easily show that the cavity input-
output formulas (2) and (3) as well as the commutation
relations �byin�t�; bin�t0�� � �b

y
out�t�; bout�t0�� � ��t� t0� are

preserved by substituting as

bin�t� !
1���
2
p �b�1�in �t� � b

�2�
in �t��;

bout�t� !
1���
2
p �b�1�out�t� � b

�2�
out�t��; �c ! 2�0c;

(6)

where two cavity decay channels are represented by super-
scripts (1) and (2), respectively. The setup of Fig. 6 thus
works in the same fashion as that of Fig. 4 with an effective
cavity decay rate 2�0c, where each beam splitter is of the
50:50 type.

Finally, we demonstrate how our controlled-phase gate
is directly used to generate a cluster state. Here, we assume
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FIG. 5. (a) The success probability P and (b) the fidelity F of
the controlled-phase gate with respect to r � P1=P0.
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FIG. 6. A modified version of the controlled-phase gate to take
advantage of two-sided cavities. Each BS represents a 50:50
beam splitter.
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the gate works with success probability P> 2=3. In this
case, one can take a simple add-on strategy to generate a
cluster state of an arbitrary configuration. In order to show
this, let us denote by j�ni the 1D cluster state of n qubits,
and express j�n�2i as

j�n�2i � j�0in�3j0in�2 � j�1in�3j1in�2; (7)

where jiin�2 denotes the state of the �n� 2�th qubit and
j�iin�3 denotes the relevant terms for the other �n� 3�
qubits. It is easily verified that j�ni can be written as

j�ni �
1���
2
p j�0in�3j0in�2�j0in�1j�in � j1in�1j�in�

�
1���
2
p j�1in�3j1in�2�j0in�1j�in � j1in�1j�in�;

(8)

where ji � 1��
2
p �j0i  j1i�. In order to generate j�n�1i,

one simply attaches a qubit in state j�i to j�ni by perform-
ing a controlled-phase operation. If the operation succeeds,
one gets j�n�1i. If it fails, however, since the nth qubit is
measured in an arbitrary basis, the state (8) becomes a
mixed state

	fn�1 �
1

2
�j�0in�3j0in�2 � j�1in�3j1in�2�j0in�1h� � � j

�
1

2
�j�0in�3j0in�2 � j�1in�3j1in�2�j1in�1h� � � j:

(9)

From this expression, it is apparent that j�n�2i can be
recovered from 	fn�1 by measuring the �n� 1�th qubit in
the computational basis and performing an appropriate
unitary operation on the �n� 2�th qubit according to the
measurement result. In other words, when an add-on pro-
cess fails, only two qubits are lost. The average number of
qubits attached by m entangling operations is thus �3P�
2�m, which grows on average if P> 2=3. In the same
fashion, it is also shown that if the ith qubit of j�ni �i <
n� is measured in an arbitrary basis, one can recover two
1D cluster states j�i�2i and j�n�i�1i up to appropriate
local unitary operations by measuring both the �i� 1�th
and the �i� 1�th qubits. We can thus connect two 1D
cluster states by performing controlled-phase operations
to form a cross-shaped 2D cluster state. Though a failure of
16050
the entangling operation would break them into four 1D
cluster states, they can be connected into two 1D cluster
states as shown above, and then be used to form a 2D
cluster state again. By repeating these procedures, one can
generate a cluster state of an arbitrary configuration.

In summary, we have proposed a contolled-phase gate
which operates between two distant atoms each trapped in
an optical cavity, and have shown that the proposed gate is
feasible for generation of a cluster state. In particular, the
gate has no theoretical bound on the attainable success
probability while it achieves a very high fidelity even
with the considerable imperfections.
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