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Incompressible Liquid State of Rapidly Rotating Bosons at Filling Factor 3=2
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Bosons in the lowest Landau level, such as rapidly rotating cold trapped atoms, are investigated
numerically in the specially interesting case in which the filling factor (ratio of particle number to vortex
number) is 3=2. When a moderate amount of a longer-range (e.g., dipolar) interaction is included, we find
clear evidence that the ground state is in a phase constructed earlier by two of us, in which excitations
possess non-Abelian statistics.
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There is increasing interest in rapidly rotating ultracold
atoms in a trap. For bosons rotating at a moderate fre-
quency, a vortex lattice is observed [1]. At sufficiently high
rotation frequency (close to the natural frequency of a
harmonic trap), it is expected that the lattice melts and is
replaced by a series of highly correlated liquids that can be
related to fractional quantum Hall (QH) states. The crucial
parameter is the ratio � � N=NV of the number of atomsN
to the number NV of quantized vortices that would pierce
the cloud if it were a Bose condensate. This ratio corre-
sponds to the Landau level filling factor � in the fractional
quantum Hall effect. Previous theoretical work on this
regime has emphasized the importance of the lowest
Landau level (LLL) when interactions are weak and the
temperature is low, and pointed out that in this restricted
space of states the Laughlin � � 1=2 state [2] is the exact
ground state for the standard ‘‘contact’’ form of interaction
[3]. Later, evidence of a sequence of correlated liquids was
found at � � k=2, k � 1; 2; 3; . . . , for � � �c [4], and a
vortex lattice at � > �c, with �c ’ 6–10 [4,5]. The corre-
lated liquids were found [4] to have large overlaps with
states proposed by two of us (RR) some time ago [6]. The
k � 1 liquid is the familiar Laughlin state, while k � 2 is
the Moore-Read (MR) paired state [7]. More recent work
strengthens the case for the MR state at � � 1, and pro-
vides some evidence for liquid states at still other filling
factors not in the sequence � � k=2 [8]; however, results at
� � 3=2 were inconclusive. Meanwhile, experiments are
approaching the LLL regime [9], though the filling factors
are still� �c. Very recently, Bose condensation has been
achieved in atoms with a large magnetic dipole moment
[10], and the effect of dipolar interactions on the vortex
lattices and on the quantum fluids at low filling factors has
been investigated [11].

In this Letter, we study numerically the next member,
� � 3=2, of the RR sequence for system sizes larger than
in Refs. [4,6,8]. We consider the s-wave (contact) interac-
tion in the LLL and the effect of adding a longer-range
component such as the dipolar interaction (for dipole mo-
ments oriented parallel to the rotation axis). This case, k �
05=95(16)=160404(4)$23.00 16040
3, is of interest for several reasons: For k > 1, the quasi-
particle excitations of each of the sequence of states intro-
duced in Refs. [6,7] have the fascinating property of non-
Abelian statistics [7]. This makes these states even more
exotic than the Laughlin [2] and hierarchy–composite-
fermion [12] states, in all of which the quasiparticles
have fractional, but Abelian, statistics. k � 3 is the small-
est k value in the RR sequence for which the non-Abelian
statistics support universal quantum computation [13]. For
this filling factor, � � 3=2, there is also an alternative
candidate, which is a hierarchy–composite-fermion phase.
Using both the sphere and the torus geometries (to avoid
edge effects), we find clear evidence that the boson system
at � � 3=2 with a moderate amount of longer-range inter-
action added is in the phase described by our trial states,
and hence is non-Abelian; this may also be the case for the
pure s-wave interaction, as suggested by Ref. [4]. The
evidence comes from the energy spectrum on the torus,
which shows a ground-state doublet with very large over-
laps with the RR trial states, and a relatively large gap to
higher excited states, and from the two-particle correlation
function.

The conventional effective interaction Hamiltonian for
the atoms, representing s-wave scattering at low momen-
tum, is

Hs � g
X

1�i<j�N

�3�ri � rj�; (1)

where g � 4�@2a=M (a is the s-wave scattering length,
and M is the mass of an atom). It is of interest to consider
also electric or magnetic dipole interactions between the
atoms, of the form

Hdip � Cd
X

1�i<j�N

pi � pj � 3�nij � pi��nij � pj�
jri � rjj3

; (2)

where nij � �ri � rj�=jri � rjj, and the pi’s are unit vec-
tors representing the (fixed) dipole moments. We will
assume that the dipole moments are parallel to the 3 axis;
then any �-function term that may accompany the dipolar
4-1 © 2005 The American Physical Society
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FIG. 1 (color online). Low-lying spectrum for 18 bosons for
dipolar model Hint with V2=V0 � 0:380 on the torus vs the
pseudomomentum K � jKj, for two different unit cells.
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interaction can be absorbed into the s-wave interaction
term in Hint � Hs �Hdip.

We work in an axially symmetric harmonic trap, with
frequencies !3, !? for motion, respectively, along, and
perpendicular to, the symmetry (3) axis. For a system of
bosons rotating rapidly about the 3 axis, we will restrict the
atoms to the LLL states, which are the single-particle states
of lowest energy for each value m 	 0 of angular momen-
tum L3=@ (and thus have no excitation along the 3 axis).
This is based on the assumption that interactions are weak;
that is, g �n and Cd �n ( �n is the typical density of particles in
the drop of atoms) are small compared with the energy for
excitation to higher states, that is, with 2@!? and @!3

[3,4]. The LLL states can be represented by functions in
two dimensions, um�z� � zme�jzj

2=4=
������������������
2�2mm!
p

, where z �
x� iy (henceforth, we use units in which the magnetic
length ‘B and @ are 1 [14]).

When working on the sphere [15], there is a finite
number NV of flux quanta penetrating the surface of
radius R �

������������
NV=2

p
, and there are NV � 1 single-particle

states, which have wave functions um�z� / zm=�1�
jzj2=4R2�1�NV=2, m � 0; . . . ; NV in terms of the coordinate
z in the plane (from stereographic projection of the sphere).
In the torus geometry (i.e., periodic boundary conditions
on a parallelogram), there are NV LLL basis states when
NV flux pierce the system.

In the subspace of LLL states in the infinite plane, the
interaction Hamiltonian Hint can be represented by the
pseudopotentials Vm, m � 0; 2; . . . . Vm is the interaction
energy for a single pair of bosons of relative angular
momentum m (only even m are relevant for bosons) [15].
The pseudopotentials can be obtained [11] from the ana-
lytic expressions in the limit (for simplicity) of vanishing
thickness of the two-dimensional fluid, ‘3=‘? ! 0 [14]. In
this limit an infinite constant has to be absorbed into g. The
m � 0 pseudopotentials are determined entirely by the
dipolar interaction, and hence their ratios are fixed; they
are plotted as an inset in Fig. 2 below. V0 can be treated as
an independent parameter, so that the ratio of V2=V0 is a
dimensionless parameter characterizing the interaction
apart from one overall energy scale. We also studied an
interaction in which Vm for m> 2 is set to zero. This
description of the interaction can be extended to the sphere
(also using rotation symmetry) and to the torus.

A p-body �-function interaction,

Hp �
Wp

p!

XN

i1;i2;...;ip�1

�2�zi1 � zi2� � � ��
2�zip�1

� zip�; (3)

projected to the LLL is also of interest (this form is correct
for the plane and torus geometries, and for the sphere there
is a corresponding rotationally invariant form). The paraf-
ermion states found in Ref. [6] are unique, exact zero-
energy eigenstates of such interactions for p � k� 1
when N is divisible by k and NV � 2N=k� 2 (on the
16040
sphere), so that � � limN!1N=NV � k=2. These states
serve as trial wave functions with which the exact ground
states for Hint can be compared. They represent incom-
pressible liquid phases, in which the excitations enjoy non-
Abelian statistics for k > 1 (however, we will later suggest
that a caveat to this statement is required).

Before turning to our results, we review some aspects of
the LLL on a torus [16]. On the torus at � � N=NV � 3=2,
translational symmetry implies that all energy eigenstates
possess a trivial center-of-mass degeneracy of 2, which is
exact for any size system, and also that there is a conserved
pseudomomentum K [16], which is a vector lying in a
certain Brillouin zone. In the RR phases, the ground states
have a net degeneracy k� 1 in the thermodynamic limit,
which is connected with the non-Abelian statistics [6,7].
For k � 3, this fourfold degeneracy is made up of the
trivial factor 2 (which is always discarded in numerical
studies), together with a further twofold degeneracy, which
in general becomes exact only in the thermodynamic limit;
all these ground states have K � 0. (For the 4-body inter-
action, the fourfold degeneracy is exact for any size, as the
ground states have exactly zero energy.) By contrast, the
hierarchy–composite-fermion ground state for bosons at
� � 3=2 possesses only the trivial twofold degeneracy.
Then for an incompressible fluid on the torus, the spectrum
of a sufficiently large system in one of these two phases
should exhibit a nearly degenerate pair of ground states
(respectively, a single ground state) at K � 0, separated by
a clear gap from a region of many states at higher energy
eigenvalues.

In Fig. 1 we show the spectrum for 18 particles on the
torus for Hint with V2=V0 � 0:380 (energies are in units of
Cd for the dipolar H). A clear doublet can be seen at K �
0, and the rest of the spectrum is well-separated compared
with either the spacing of the doublet or the spacing among
the levels above the gap. This spectrum leaves little doubt
that the fluid is incompressible. The results are similar for
the two geometries of the torus (hexagonal and square unit
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FIG. 3 (color online). Low-lying spectrum for 21 particles on
the sphere for dipolar interaction with V2=V0 � 0:350 vs equiva-
lent wave vector K � L=R (L is the angular momentum). Inset
shows the overlap squared, with symbols as in Fig. 2.

FIG. 2 (color online). The total overlap squared (sum of the
two RR wave functions with the lowest two K � 0 states ofHint)
as a function of V2=V0 on the torus (square unit cell), for 18
particles, for both the dipolar and the V0-V2 –only model inter-
actions. The inset shows the m � 0 pseudopotentials for the
dipolar interaction.

FIG. 4 (color online). Two-particle correlation function g�r� of
various ground states on the sphere, plotted against great-circle
distance r. N � 21 g�r� is for a V0-V2 model.
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cells) shown. Spectra at nearby V2=V0, and at other aspect
ratios, are similar.

The overlap of each of the two low-lying K � 0 states
with the trial ground-state doublet of the 4-body interaction
can be calculated. We may add the squares of these over-
laps to obtain the total overlap squared (which is at most 2)
of the two-dimensional subspace of Hint with that of H4.
This total overlap squared is plotted vs V2=V0 for both the
V0 plus dipole interaction and the V0-V2 –only interaction
in Fig. 2 (the total is made up of roughly equal contribu-
tions from each of the two low-lying states, across the
whole range of V2=V0 values). For sufficiently large
V2=V0, both cases show a very abrupt drop in overlap
which is due to a phase transition. Beyond this point, the
low-lying spectrum shows indications that the ground state
in the thermodynamic limit breaks translational symmetry.
The transition is probably first order, but does not occur
here by crossing of energy levels of different symmetry,
because a crystal and the RR fluid both have ground states
at K � 0. This transition is similar to that found in other
recent work at � � 1=2 [11] and will not be pursued here.
We note, however, the similarity of these overlap curves
with those for � � 1=2 in the case of fermions as the
interaction is changed, which show similar trends and
similar curves [17].

The N � 18 overlaps should be viewed as significantly
large. Note that for a random vector in D dimensions, the
probability of obtaining an overlap with a given vector (or
two-dimensional subspace) greater than some given value
is of order e�D as D! 1. The probability of obtaining
similar overlaps for two random vectors is of order the
square of this. In our case, the K � 0 block of the matrix
contains (with reflection symmetry included) about
242 000 states. However, there are other symmetries that
we did not use, such as point operations, that commute with
translations at the zone center and would further reduce
16040
somewhat the dimension of the relevant space. The large
value of not only the ground state, but also the lowest
excited state, overlap with the trial subspace is very strong
evidence that these systems are in the RR phase, and would
not support an interpretation as hierarchy–composite-
fermion states.

Figure 3 shows the spectrum in the spherical geometry,
with V2=V0 � 0:350. Again, a clear gap separates the
ground state from the rest of the spectrum. The results
are consistent with those on the torus.

The two-particle correlation function g�r� for the ground
state on the sphere is shown in Fig. 4, for the V0-V2 –only
interaction for 21 particles, together with that of the RR
trial state (the ground state of H4) for 18 particles, for
comparison. In general, g�r� in a strongly correlated state
should show a correlation hole at short distances [i.e.,
g�0�< 1], and in an incompressible fluid state it should
tend to 1 exponentially in r at long distances. In the present
case, while g�r� is less than 1 at r � 0, it has a local
maximum there (mentioned in Ref. [8], and this seems to
be a general feature of the ground states for � > 1=2). This
surprising result may indicate a general tendency for bo-
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FIG. 5 (color online). Low-lying spectrum (in units of g) for
18 particles on the torus vs pseudomomentum K, for Hs for two
different unit cells.
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sons to cluster, at least in these rotationally invariant
ground states. The behavior at large r suggests that these
systems are on the verge of being larger than the relevant
correlation length. For the RR trial state, g�r� for 18
particles has essentially converged to its thermodynamic
limit.

We can gain insight into the structure of g�r� as �
increases by considering the vortex lattice. In this state
there are holes in the density at some fixed positions.
Accordingly, g�r� in the vortex lattice, averaged over shifts
and rotations of the lattice to represent the finite-size
system, will have maxima and minima at arbitrarily large
r; in particular, there will be a maximum at r � 0. It seems
that, in the RR series, the oscillations in g�r� die out with
increasing r at least for small k, but that as k increases the
oscillations extend out to larger r, and the maximum at r �
0 becomes larger. We suspect that for sufficiently large k,
the RR trial states actually exhibit a transition to vortex-
lattice long-range order (or possibly to one of the other
ordered states found in Ref. [11]). This would be analogous
to the Laughlin states at � � 1=m, which exhibit increas-
ing oscillations with increasing m, and eventually develop
crystalline order of the particles [g�0� � 0 in these cases]
[2]. Note that in both cases the long-range order in the trial
states is (or would be) occurring for the exact ground states
of some family of special Hamiltonians, which are not the
ones of most physical interest, yet the transition is of the
same type as that for the latter (though the critical �may be
much different, as for the Laughlin states).

Figure 5 shows the spectrum of the pure contact inter-
action Hs (i.e., V2=V0 � 0) on the torus. This, in conjunc-
tion with the corresponding g�r� on the sphere for N � 24
particles shown in Fig. 4, shows no clear signal that the
system is incompressible. While it is possible that the
correlation length is simply larger, and that larger systems
would exhibit incompressibility, we cannot rule out the
16040
possibility that the fluid is this region is compressible or
that there is a breaking of translational symmetry in the
thermodynamic limit. Indeed, the dependence of the spec-
trum on the aspect ratio in the torus geometry suggests the
presence of a broken symmetry ‘‘stripe’’ phase competing
with the RR phase [18].

In conclusion, we have exhibited clear evidence that for
bosons in the lowest Landau level at filling factor 3=2,
when a moderate amount of longer-range interaction is
included, the ground state is an incompressible fluid of a
type that possesses non-Abelian statistics for the quasipar-
ticle excitations.
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