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Testing Gravity-Driven Collapse of the Wave Function via Cosmogenic Neutrinos
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It is pointed out that the Diósi-Penrose ansatz for gravity-induced quantum state reduction can be tested
by observing oscillations in the flavor ratios of neutrinos originating at cosmological distances. Since
such a test would be almost free of environmental decoherence, testing the ansatz by means of a next
generation neutrino detector such as IceCube would be much cleaner than by experiments proposed so far
involving superpositions of macroscopic systems. The proposed microscopic test would also examine the
universality of the superposition principle at unprecedented cosmological scales.
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In the 1950s Feynman observed that a possible gravity-
induced failure of quantum mechanics for objects as small
as the Planck mass (�10�5 grams) is not inconsistent with
the existing physical evidence [1]. Remarkably, this ele-
mentary observation remains unchallenged even today,
when we have gained almost unshakable confidence in
the universality of quantum mechanics. Compounded by
persistent conceptual problems of both quantum theory and
quantum gravity [2], time and again this fact has inspired
suggestions of a gravity-driven reduction of the state vector
[3–5], albeit in a considerably evolved form than its pre-
liminary inception by Feynman [1].

Noteworthy among these are the specific proposals put
forward by Diósi [4] and Penrose [5], who independently
arrived at a phenomenological ansatz for the time scale
beyond which quantum superpositions may become un-
stable. This ‘‘duration of quantal stability’’ turns out to be
experimentally testable, and can be expressed in a form
resembling the mean life of an unstable particle:

T �
@

�EG
; (1)

where �EG is the gravity-induced ill definedness in the
energy of a given system in superposition of two states.

There have been several experimental proposals to test
this ansatz [5–7]. Remarkably, one of these proposals [7]
purports to superpose a mirror of some 10�10 grams, which
is only about 5 orders of magnitude short of the Planck
mass. These proposals are, of course, only a small part of
the ongoing drive to experimentally push the boundaries of
superposition principle as far up the macroscopic scale as
possible [8]. All of these efforts are hampered, however, by
one major difficulty. Because of the intractability of envi-
ronmentally induced decoherence for such large systems, it
is usually extremely difficult to distinguish any genuine
state reduction scheme from the effective decoherence
resulting from a subjective omission of the environmental
degrees of freedom [9].

There is, however, nothing in ansatz (1) that necessitates
a macroscopic system for its validity. Indeed, if the ansatz
was meant only for such large systems, it would not bear
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the fundamental and universal significance attached to it by
Diósi and Penrose. Put differently, even if the ansatz is
verified for macroscopic systems, it cannot be accepted as
a truly fundamental feature of the world until it is also
verified for elementary systems. Therefore, here we pro-
pose to test the ansatz on neutrinos, originating at cosmo-
logical distances. Since neutrinos are electromagnetically
neutral and sensitive only to the weak and gravitational
interactions, the chances of them decohering within the
cosmic vacuum are negligible. As a result, cosmogenic
neutrinos form an ideal system for testing any scheme of
gravity-driven state reduction.

To appreciate this, in what follows we first take a closer
look at the rational behind ansatz (1), then review the
theory of neutrino flavor oscillations, and, finally, extract
deviations from the quantum mechanically expected flavor
ratios by applying the ansatz to massive neutrinos.

The physics of the Diósi-Penrose ansatz.—Since
Penrose’s proposal is minimalist in conception (i.e., it
relies only on the first principles of quantum mechanics
and general relativity), we shall follow his reasoning [5].
He considers two quantum states of a given mass, j�1i and
j�2i, each stationary on its own, and possessing the same
energy E:

i
@
@t
j�1i � Ej�1i; i

@
@t
j�2i � Ej�2i (2)

(henceforth we mostly use Planck units: @ � c � G � 1).
In standard quantum mechanics linearity necessitates that a
possible superposition of these two states, such as jXi �
�1j�1i � �2j�2i, must itself be a stationary state with the
same energy. However, when gravitational fields of the two
masses are taken into account, in general each of the
original states would correspond to two entirely different
spacetimes. The principles of general relativity would then
dictate that the time-translation operators ‘‘ @@t ,’’ corre-
sponding to the action of the timelike Killing vector fields
of the two (stationary) spacetimes, would also be quite
distinct form one another. On the other hand, when these
two Killing fields happen not to be too different, there
would be only a slight ill-definedness in the action of @

@t ,
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and that would be reflected in the energy of the system.
Penrose uses this gravity-induced ‘‘error’’ in energy, �EG,
as an approximate measure of instability of the superposi-
tion, and postulates the mean lifetime T of such a state to
be ��EG��1, as in (1), with two decay modes being the
component states j�1i and j�2i with probabilities j�1j

2

and j�2j
2, respectively.

Penrose next suggests that this measure of instability,
�EG, can be estimated in terms of the incompatibility
between the notions of free fall within the two spacetimes.
At some identifiable event, let a1 and a2 be the acceleration
3-vectors of the free-fall motions in the two respective
spacetimes. Then �EG can be estimated as

�EG � �
Z

�t

�a1 � a2	 
 �a1 � a2	dr; (3)

where the integrand is a coordinate-independent scalar
quantity, �t represents a three-dimensional hypersurface
at an instant of time t, and � � 0 is an arbitrary dimen-
sionless parameter (in what follows, this parameter will
provide a phenomenological handle on the ‘‘strength’’ of
quantum state reduction). Of course, in Newtonian ap-
proximation a1 and a2 are simply the forces per unit test
mass: a1 � �r�1 and a2 � �r�2, where �1 and �2 are
the respective gravitational potentials for the two space-
times. Therefore, using the Poisson’s equation r2��r	 �
4���r	, the estimate (3) can be reduced to

�EG � 4��
ZZ ��1�r	 � �2�r	���1�r0	 � �2�r0	�

jr� r0j
drdr0;

(4)

where �1 and �2 are the two respective mass distributions
responsible for the two spacetimes [5]. It is worth noting
here that this ill definedness in energy is based on the
gravitational energy of the system itself, and not on the
energy of any externally present fields, although the latter
may play an indirect role in some cases. In fact, it is
essentially the gravitational self-energy of the difference
between the two superposed mass distributions.

The order of magnitude for the mean life T based on the
expression (4) can now be estimated to be simply �r=m2,
wherem is the rest mass of the system, and �r is the spread
in the position of the system between its two superposed
states. For example, in the case of a nucleon, with �r taken
to be its strong interaction range, the mean life of a
superposition of its states turns out to be over 107 years;
whereas for systems as large as a speck of dust of mass
10�4 grams and position spread 1 mm, it plunges to some
10�13 seconds (cf. [4,5]). Evidently, the postulated mean
life T reproduces the phenomenology of quantum state
reduction quite compellingly.

Despite this predicted astronomically long mean life of
superpositions for elementary particles, the proposed an-
satz turns out to be testable for cosmogenic neutrinos.

Theory of neutrino oscillations.—The remarkable phe-
nomena of neutrino oscillations are due to the fact that
16040
neutrinos of definite flavor states j��i, � � e;�, or �, are
not particles of definite mass states j�ji, j � 1, 2, or 3, but
are superpositions of the definite mass states [10]:

j��i �
X
j

U��jj�ji; (5)

with U being the (time-independent) leptonic mixing ma-
trix. By the same token, neutrinos of definite mass states
are superpositions of the definite flavor states: j�ji �P
	U	jj�	i, with the mixing matrix being subject to the

unitarity constraint
P
jU
�
�jU	j � 
�	. As a neutrino of

definite flavor state propagates through vacuum for a
long enough laboratory time, the heavier mass eigenstates
in (5) lag behind the lighter ones, and the neutrino trans-
forms itself into a different flavor state. The probability for
this transition from one flavor state to another can be easily
obtained as follows. In the rest frame of each j�ji, where
the proper time is �j, plane wave analysis leads to the
Schrödinger equation

i
@
@�j
j�j��j	i � mjj�j��j	i; (6)

with a solution j�j��j	i � e�imj�j j�j�0	i, where mj is the
eigenvalue of the mass eigenstate j�j�0	i. In terms of the
coordinate time t and position r in the laboratory frame,
this phase factor takes the familiar form

e�i�Ejt�pj
r	; (7)

where Ej and pj are, respectively, the energy and momen-
tum associated with the definite mass state j�j�0	i.

Now neutrinos are highly relativistic particles, which
permits the assumption that t � jrj � L, where L is the
distance traveled by them before detection. Moreover,
assuming that they are produced with the same energy E
regardless of which state j�j�0	i they are in (and thatmj 

E), up to the second order in mj the dispersion relation
gives the following expression for their momenta,

pj �
������������������
E2 �m2

j

q
� E�

m2
j

2E
; (8)

which, along with the assumption t � L, reduces the phase
factor in (7) to e�i�m

2
j =2E	L. Consequently, in the laboratory

frame, and up to the second order in mj, the time evolution
of the neutrino flavor state (5) is given by

j���t	i �
X
	

X
j

U��je
�i�m2

j =2E	LU	jj�	�0	i: (9)

As a result, the transition probability for the neutrinos to
‘‘oscillate’’ from a given flavor state, say j���0	i, to an-
other flavor state, say j�	�t	i, is given by

P�	�E;L	 :�P��!�	�E;L	� jh�	�0	j���t	ij
2

�
�	�
X
j�k

U��jU�kU	jU
�
	k�1�e

�i��m2
jk=2E	L�;

(10)
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where �m2
jk � m2

k �m
2
j > 0 is the difference in the

squares of the two masses. From this transition probability
it is clear that the experimental observability of neutrino
oscillations is determined by the quantum phase

� :� 2�
L
LO

; (11)

where LO�E;m	 :� 4�E=�m2
jk is the energy-dependent

oscillation length. Thus, flavor changes would be observ-
able whenever the propagation distance L is of the order of
the oscillation length LO. Therefore, in what follows it
would suffice to concentrate on these two variables.

Applying the Diósi-Penrose ansatz to massive neutri-
nos.—It is evident from ansatz (1) that the proposed
mean life of superpositions is independent of the speed
of light, and hence applicable to both nonrelativistic as
well as relativistic systems, including ultrarelativistic neu-
trinos. Moreover, for our purposes it would not be incon-
gruous to estimate the spacetime distortions due to
neutrinos themselves by treating them as classical spinning
particles. Accordingly, let us consider a spherically sym-
metric gravitating body of mass m and angular momentum
s. If the gravitational field produced by the body is suffi-
ciently weak, then, in an approximate global inertial frame,
it can be described by the following well-known solution of
the linearized Einstein’s field equations:

ds2 � �

�
1�

2m
r

�
dt2 �

4jsj
r

sin2�dtd�

�

�
1�

2m
r

�
�dr2 � r2d�2 � r2sin2�d�2	: (12)

This is essentially a Newtonian line element, apart from the
off-diagonal term involving the magnitude jsj of the intrin-
sic angular momentum of the body. Now, in the case of a
neutrino the magnitude of s is simply @

2 , which, in ordinary
units, is some 16 orders of magnitude per second smaller
than the estimated (active) neutrino mass (measured to be
< 2:3 eV [11]). Therefore, it would be adequate for our
purposes to consider only the Newtonian part of the gravi-
tational field due to the neutrino mass, and neglect the off-
diagonal contribution due to its spin.

As an excellent approximation, it is then possible to
apply Penrose’s Newtonian prescription (4) to each of the
three pairs of neutrino states in the superposition (5).
Moreover, provided we continue to take the expectation
value for the neutrino mass distribution to be a uniform
sphere of effective radius aj, this two-body Newtonian
prescription can be easily calculated to be

�Ej;kG � 8��
�3m2

j

5aj
�

3m2
k

5ak
�

mjmk

jrj � rkj

�
; (13)

with jrj � rkj being the displacement between the two
superposed mass eigenstates resulting from their journey.
The particular shape of the smearing introduced here to
avoid the self-energy divergence has little effect on what
16040
follows [12]. More importantly, it is manifest from (13)
that the product �Ej;kG � dL is Lorentz invariant. Now for
ultrarelativistic neutrinos the usual spreading of the wave
packet can be easily shown to be negligible [13], but within
a neutrino beam of definite energy the different mass
eigenstates j�ji in the superposition (5) travel at slightly
different speeds 	j, producing the displacement

jrj � rkj � �	j � 	k	t �
�pj � pk	

E
L �

�m2
jk

2E2 L: (14)

Here the last relation follows from (8), and we have used
the relativistic identity 	 � p=E, as well as continued to
assume t � L and taken the kth neutrino to be the heavier
(and hence the slower) of the two partners. Using (14), the
measure (13) can now be rewritten in terms of neutrino
parameters—such as energy, propagation length, and the
mass-squared difference—as follows:

�Ej;kG �L	 � 8��
�

3�mj �mk	

5GF
�

2mjmkE
2

�m2
jkL

�
; (15)

where we have taken the effective radii aj to be � GFmj,
with GF being the Fermi constant of weak interactions.

The effect of this gravity-induced ill definedness on the
off-diagonal matrix elements of the statistical operator
corresponding to the superposition (9) can now be easily
worked out (cf. [12]). Unsurprisingly, it turns out to be a
time-dependent modification of the matrix elements,

U��jU�kU	jU�	k ! e��
R
L

D
�Ej;kG �L

0	dL0�U��jU�kU	jU�	k;

(16)

where the integrand—with definition �Ej;kG �D	 � 0—is
the ‘‘decay constant’’ corresponding to the ‘‘mean life’’ T
in (1). As a result of this nonunitary modification, the
transition probability (10) for flavor oscillations would
acquire a time-dependent ‘‘damping factor’’:

P�	�E;L	! 
�	�
X
j�k

U��jU�kU	jU�	k

��1� e�i��m
2
jk=2E	L�

R
L

D
�Ej;kG �L

0	dL0 �: (17)

Now, in the absence of the damping factor (i.e., within a
unitary mechanics), it is clear from the phase (11) that
flavor changes can be observable only when the propaga-
tion distance L of neutrinos is about the same size as their
oscillation length LO—i.e., only when the condition

�m2
jk �

4�E
L

(18)

is satisfied. Substituting this observability condition into

the evaluation of the equation e��
R
L

D
�Ej;kG �L

0	dL0� � e�1 then
yields the following condition for observability of the
proposed instability in quantum superpositions:
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L�
lP

8��

�
3�mj �mk	

5m3
PGF

�
mjmkE

2�m3
P

ln
�
6�e�mj �mk	

5GFmjmkE

��
�1
;

(19)

where, for convenience, we have explicated the units by
means of Planck length (lP) and Planck mass (mP).

From this observability condition it is easy to work out
that—assuming the values of masses mj � mk � 2 eV
[11]—the Diósi-Penrose scheme for state reduction can
be either ruled out or verified for the values of E and L in
the (approximate) ranges of �0; 2:3� � 1023 eV and
�0:7; 15� � 109 light years, respectively. As a result, pro-
vided cosmogenic neutrinos are at our disposal, an upper
bound of order 10�2 can be comfortably placed on the free
parameter �. In fact, it may even be possible to place an
upper bound as strong as of order 10�3 on this parameter.
This is clear from the nature of the transition probability
(17) itself, which would change significantly (thereby al-
tering the observable flavor ratios from the quantum me-
chanical expectations) even when the nonunitary Diósi-
Penrose damping is as weak as e�0:1.

Observability of the nonunitary flavor oscilla-
tions.—Ultrahigh-energy neutrinos from cosmologically
distant sources such as active galactic nuclei and gamma
ray bursters are generally believed to be produced as
secondaries of cosmic ray protons interacting with ambient
matter and photon fields [14]. Such proton-proton and
proton-photon interactions produce neutral and charged
pions, which, in turn, decay into neutrinos via the chain:
�� ! ���� ! e��e �����. From the very inception,
these interactions have been thought to provide a ‘‘guar-
anteed’’ source of cosmogenic neutrinos. Moreover,
although the absolute flux of the different flavor states of
such neutrinos is presently unknown, the above decay
chain strongly suggests their relative flux ratios
�S
�e :�

S
�� :�S

�� at the source to be 1
3 : 2

3 : 0
3 .

Now, neutrinos—being stable and neutral particles—
point back to their sources, thereby providing vital infor-
mation about their propagation lengths L, which can then
be further consolidated by the coincident data on the
cosmological redshifts of the sources [15]. Furthermore,
being only weakly interacting, in the absence of the Diósi-
Penrose decay [provided condition (18) is satisfied] their
flavor states (9) would maintain quantum coherence while
propagating through the cosmic vacuum. Given the above
initial flux ratios of neutrino flavors, this coherence would
then be reflected in the flavor fluxes observed at a terrestrial
detector, which can be easily calculated as

�D
�	�E;L	 �

X
��e;�;�

P�	�E;L	�
S
��; (20)

where the transition probabilities P�	 are given by (10).
The corresponding flux ratios �D

�e :�
D
�� :�D

�� observed at a
detector can thus be compared with those predicted via the
nonunitary transition probabilities (17), provided the mass-
dependent observability relations (19) between the varia-
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bles E and L in (20) are satisfied, and sizable fluxes of
relevant flavors are collected at Earth.

Fortunately, recent estimates of cosmogenic neutrino
fluxes suggest that this is indeed feasible. For example,
the authors of Ref. [16] estimate sizable fluxes of neutrinos
from cosmologically distant sources in the energy ranges
up to and beyond the threshold of 1021 eV. In fact, a few
neutrinos in the MeV range from a distant supernova have
already been observed [17]. What is more, there are a large
variety of neutrino detectors under construction at present,
or planned to be operational in the near future, designed to
be sensitive to a wide range of neutrino energies
[16,18,19]. Their ability to measure the flavor ratios of
cosmogenic neutrinos at high precision has also been
demonstrated in Ref. [20]. Therefore, a test of the Diósi-
Penrose ansatz by means of observing flavor ratios of
cosmogenic neutrinos appears to be quite feasible.

I am grateful to Roger Penrose for discussions on his
ideas about gravity-induced state reduction, and to
Lajos Diósi for his constructive comments on the
manuscript.
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